Blog Category: Education

Exploring Careers In Industry: Where do I want to work… and who already works there?

Part 2 of 4 on “Exploring Careers in Industry” by SfRBM Nominations/Leadership Development Chair Anne Diers, Ph.D. (Dr. Diers on LinkedIn: https://www.linkedin.com/in/annerdiers/)

Looking for a job in academia versus elsewhere can be a very different process. LinkedIn is much more important in the non-academic setting. Make sure your LinkedIn page is current, professional, and thoughtful. You can also use LinkedIn to find out more about companies you're interested in, connect to people, network for informational interviews and/or positions (a personal introduction to a hiring manager can be very helpful), and look for position announcements. 

Connect with SfRBM on LinkedIn at - https://www.linkedin.com/company/society-for-free-radical-biology-and-medicine/

 
 

Making the leap to industry can be very challenging. You need to target your search and be very active in it - your time will be better spent networking than just applying positions from the comforts of your home.

For the hiring manager, their biggest concern is that they’ll make the wrong decision on who to hire, ending up with someone who is not be able to accomplish the business objectives at hand. With that perspective, it becomes clear that the best way to get a job in industry is to allay those fears in the hiring manager. Or in other words, connect your skills to the needs listed in the job posting – be specific! That middle-author manuscript you’re on because you did a bit of confocal microscopy for the lab down the hall should become “demonstrated proficiency working in a collaborative team environment” on your resume. It also helps to have a personal introduction if possible. To do this, you’ll need to identify an opening, and then get in touch with someone who can help you get that introduction. Again, LinkedIn can help you get started; you can see who’s where and identify the connections you may not even know you already have. And don’t forget, you’ve got lots of networks to tap (not just those on LinkedIn) – including at SfRBM’s Annual Conference - because everybody knows somebody who knows somebody!

In part 3 of this series, Dr. Anne Diers will explore the topic “Resume ≠ Curriculum Vitae” In her series “Exploring Careers in Industry.”

— Published

Category: Education


Exploring Careers In Industry: What do I want to be?

Part 1 of 4 on “Exploring Careers in Industry” by SfRBM Nominations/Leadership Development Chair Anne Diers, Ph.D. (Dr. Diers on LinkedIn: https://www.linkedin.com/in/annerdiers/)


This might sound obvious, but “Industry” is a really broad term – so when you think of a job in industry, you’re actually talking about many huge sectors of science.  The available jobs will be very different based on what you’re looking for.  So you need to ask yourself a few questions to narrow in on the type of position you’re interested in. Do you want to be bench-facing? Would you like to manage a group of scientists? Do you love writing about science? Do your interests lie in product development, management, pharma, bio-tech, or instrumentation? These are obviously critical questions and you have to answer them for yourself. If the answers aren’t obvious, spend some time exploring different areas of non-academic science. myIDP at Science Careers is a very helpful tool in this respect (myidp.sciencecareers.org/). In fact, there is an incredible wealth of information on Science Careers itself. Another good way to get a handle on what you're looking for is to talk to people doing these various jobs. Talk to your sales reps, see who they know and if they can connect you to people, set-up informational interviews to find out what people actually do in their jobs.

Looking at job sites for current openings can also help you refine your idea of an ideal position.  First, you’ll see what opportunities are already open.  But second, and more importantly, you’ll get an idea for what job titles match the job you want to do (and for which you have the necessary experience).  You’ll start to develop a feeling for whether or not you want to be a Field Applications Scientist, or a Program Manager, or whatever, based on those descriptions. Then, when you find yourself in conversation with your sales reps, colleagues, or faculty, you can say to them “I’m looking for an entry-level [ideal position for you]. Have you heard of any openings for this type of job at [their illustrious company]?” This instantly gives you some credibility… and rightfully so. It means that you have done your homework, and you have a real idea of what you want to do.

In part 2 of this series, Dr. Anne Diers will explore the topic “Where do I want to work… and who already works there?” In her series “Exploring Careers in Industry.”

— Published

Categories: Education, SfRBM Trainee Council


Blending After Hiring: 5 Tips for Matching Projects with Individual Talents

By Luciana Hannibal, Ph.D. 

Team success goes hand in hand with the professional development of its members. New employees are selected according to background education (know-how theory), previous accomplishments (know-how experience) and potential (know-how to grow). These important metrics help to recruit candidates who are best suited for the position, and capture them at a stage of high self-motivation and drive.  Only a few however, will stand out for their achievements, even when the same selection process has been applied to all. Why? A pool of employees will choose to remain in a professional comfort-zone, meeting personal and team demands satisfactorily. Others will strive to further their professional development and to make a difference in the team. Some will go beyond and prepare themselves to lead their own teams in the future. Even after careful recruitment, a population of talented individuals may however derail from successful career development. A mismatch of talents and projects can hamper advancement regardless of individual mindset. Researchers in leading positions are expected to excel at understanding the scientific problem, providing new ideas and solutions, teaching and supervising, cooperating effectively with internal and external colleagues and recruiting copious amounts of extramural funding. Optimizing self-reliance of the team is thus crucial for individual and collective return on investment, and this involves aligning talents with projects. Team leaders must identify individual strengths to effectively assign project roles, and employees must be visible for their most valuable talents.  Self-motivated employees, as they typically land in the new job, constitute an invaluable asset.

Reprinted by permission from Macmillan Publishers Ltd: Nature, "Lifelong learning: Science professors need leadership training," copyright 15 July 2015
Reprinted by permission from Macmillan Publishers Ltd: Nature, "Lifelong learning: Science professors need leadership training," copyright 15 July 2015

Here is a brief guide on how to blend projects with selected talent types:

  1. The hands-on: performs best by being directly involved in practical work. Creativity may not necessarily be a natural strength; therefore, projects with a defined start and end work optimally. These employees are highly reliable in meeting milestones and deadlines. 
  2. The creative: generates ideas and is highly valuable in projects that require theoretical development, but their capacity to carry on ideas into practice may be slim. This type of employee may require additional human resources to execute tasks; encouraging them to recruit them themselves can be a win-win situation for both parties. 
  3. The communicator: skillful in communicating their work and knowledge, performs best in projects where training others is crucial. These employees are highly valuable in tasks involving transfer of knowledge, such as teaching, trainings and external presentations. 
  4. The troubleshooter: has the ability to spot a variety of problems and potential solutions. These employees function optimally in projects that involve troubleshooting and the participation of others. 
  5. The larger-than-life: if you come across an employee who has a balanced combination of the four features above, you are in the presence of a natural leader. Your job is to maximize their professional development inside and outside your team! Be part of their success!

— Published

Categories: Education, Redox Biology, Free Radical Biology and Medicine


From A Nervous New Mentor

To Experienced Mentors,

My principal investigator (PI) helped me with my writing, the postdocs in lab taught me bench science, and my fellow grad students helped me better communicate my science. I’m going to be in charge of training an undergrad on a project which will be an extension of my dissertation work. I’m excited, and my PI thinks I am ready for this responsibility, but I don’t know if I am going to be good at training as this is my first time as a science mentor. Should I be worried?

Sincerely,

A Nervous New Mentor


Dear A Nervous New Mentor,

First off, congratulations on taking this leadership role in your lab. Training freshmen scientists is one of the most important steps in maintaining the success of not only individual research programs, but scientific progress in general. That being said, training a new lab member as a graduate student or even a postdoc for the first few times can be challenging because rarely will you have someone providing constructive criticism as you employ your own method of training.

Even though this is your first time in a training position, know that your PI trusts you at this point in your career to be able to handle this responsibility. This is not to say there won’t be speed bumps and some additional demands on your already busy lifestyle.  But that is where you can utilize your mentors’ help. Never be afraid to ask for advice from your PI and other colleagues who have had the opportunity to train new lab members. Use their advice to mold your own personal training strategy, and over time with trial and error you can improve your mentoring strategy. Even seasoned investigators sometimes have to modify the way they teach based on the available resources and personal characteristics of the trainee.

So to answer your question, don’t be worried. Instead, utilize your skills as a scientist to be observant and know that some hardships and failures may come up that you will have to find solutions to implement.

Sincerely,

An Experienced Mentor (who is still learning a few tricks)

— Published

Categories: Education, Redox Biology


An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins

Click here to view the complete article in Redox Biology

Most of the SOD mimics thus far developed belong to the classes of Mn-(MnPs) and Fe porphyrins(FePs), Mn(III) salens, Mn(II) cyclic polyamines and metal salts. Due to their remarkable stability we have predominantly explored Mn porphyrins, aiming initially at mimicking kinetics and thermodynamics of the catalysis of O2− dismutation by SOD enzymes. Several MnPs are of potency similar to SOD enzymes. The in vivo bioavailability and toxicity of MnPs have been addressed also.

Numerous in vitro and in vivo studies indicate their impressive therapeutic efficacy. Increasing insight into complex cellular redox biology has been accompanied by increasing awareness of complex redox chemistry of MnPs. During O2− dismutation process, the most powerfulMn porphyrin-based SOD mimics reduce and oxidize O2− with close to identical rate constants. MnPs reduce and oxidize other reactive species also (none of them specific to MnPs), acting as reductants (antioxidant) and pro-oxidants.

Distinction must be made between the type of reactions of MnPs and the favorable therapeutic effects we observe; the latter may be of either anti- or pro-oxidative nature. H2O2/MnP mediated oxidation of protein thiols and its impact on cellular transcription seems to dominate redox biology of MnPs. It has been thus far demonstrated that the ability of MnPs to catalyze O2−dismutation parallels all other reactivities (such as ONOO− reduction) and in turn their therapeutic efficacies.

Assuming that all diseases have in common the perturbation of cellular redox environment, developing SOD mimics still seems to be the appropriate strategy for the design of potent redox-active therapeutics.

— Published

Categories: Education, Redox Biology