Latest Articles


Free Radical Biology and Medicine (FRBM)

MnSOD mediates shear stress-promoted tumor cell migration and adhesion

Publication date: December 2018 Source: Free Radical Biology and Medicine, Volume 129 Author(s): Shijun Ma, Afu Fu, Sierin Lim, Geraldine Giap Ying Chiew, Kathy Qian Luo AbstractCirculation of cancer cells in the bloodstream is a vital step for distant metastasis, during which cancer cells are exposed to hemodynamic shear stress (SS). The actions of SS on tumor cells are complicated and not fully understood. We previously reported that fluidic SS was able to promote migration of breast cancer cells by elevating the cellular ROS level. In this study, we further investigated the mechanisms regulating SS-promoted cell migration and identified the role of MnSOD in the related pathway. We found that SS could enhance tumor cell adhesion to extracellular matrix and endothelial monolayer, and MnSOD also regulated this process. Briefly, SS stimulates the generation of mitochondrial superoxide in tumor cells. MnSOD then converts superoxide into hydrogen peroxide, which activates ERK1/2 to promote tumor cell migration and activates FAK to promote tumor cell adhesion. Combining our previous and present studies, we present experimental evidence on the pro-metastatic effects of hemodynamic SS and reveal the underlying mechanism. Our findings provide new insights into the nature of cancer metastasis and the understanding of tumor cell responses to external stresses and have valuable implications for cancer therapy development. Graphical abstract

read article »


Promastigote parasites cultured from the lesions of patients with mucosal leishmaniasis are more resistant to oxidative stress than promastigotes from a cutaneous lesion

Publication date: December 2018 Source: Free Radical Biology and Medicine, Volume 129 Author(s): Lucilla Ribeiro Ávila, Clayson Moura Gomes, Pollyana Guimarães Oliveira, Rodrigo Saar Gomes, Marina Clare Vinaud, Miriam Leandro Dorta, Silvia Reni Bortolin Uliana, Fátima Ribeiro-Dias, Milton Adriano Pelli Oliveira AbstractHuman leishmaniasis caused by Leishmania (Viannia) braziliensis can be presented as localized cutaneous leishmaniasis (LCL) or mucosal leishmaniasis (ML). Macrophages kill parasites using nitric oxide (NO) and reactive oxygen species (ROS). The aim of this study was to evaluate the ability of parasites obtained from patients with LCL or ML to produce and resist NO or ROS. Promastigotes and amastigotes from LCL or ML isolates produced similar amounts of NO in culture. Promastigotes from ML isolates were more resistant to NO and H2O2 than LCL parasites in a stationary phase, whereas amastigotes from LCL isolates were more resistant to NO. In addition, in the stationary phase, promastigote isolates from patients with ML expressed more thiol-specific antioxidant protein (TSA) than LCL isolates. Therefore it is suggested that infective promastigotes from ML isolates are more resistant to microbicidal mechanisms in the initial phase of infection. Subsequently, amastigotes lose this resistance. This behavior of ML parasites can decrease the number of parasites capable of stimulating the host immune response shortly after the infection establishment. Graphical abstract

read article »


Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition

Publication date: December 2018 Source: Free Radical Biology and Medicine, Volume 129 Author(s): Anibal E. Vercesi, Roger F. Castilho, Alicia J. Kowaltowski, Helena C.F. de Oliveira, Nadja C. de Souza-Pinto, Tiago R. Figueira, Estela N.B. Busanello AbstractMitochondria possess a Ca2+ transport system composed of separate Ca2+ influx and efflux pathways. Intramitochondrial Ca2+ concentrations regulate oxidative phosphorylation, required for cell function and survival, and mitochondrial redox balance, that participates in a myriad of signaling and damaging pathways. The interaction between Ca2+ accumulation and redox imbalance regulates opening and closing of a highly regulated inner membrane pore, the membrane permeability transition pore (PTP). In this review, we discuss the regulation of the PTP by mitochondrial oxidants, reactive nitrogen species, and the interactions between these species and other PTP inducers. In addition, we discuss the involvement of mitochondrial redox imbalance and PTP in metabolic conditions such as atherogenesis, diabetes, obesity and in mtDNA stability. Graphical abstract

read article »


Role of hypochlorous acid (HOCl) and other inflammatory mediators in the induction of macrophage extracellular trap formation

Publication date: December 2018 Source: Free Radical Biology and Medicine, Volume 129 Author(s): Benjamin S. Rayner, Yunjia Zhang, Bronwyn E. Brown, Leila Reyes, Victoria C. Cogger, Clare L. Hawkins AbstractThe infiltration of activated leukocytes, including macrophages, at sites of inflammation and the formation and presence of hypochlorous acid (HOCl) are interlinked hallmarks of many debilitating disease processes, including atherosclerosis, arthritis, neurological and renal disease, diabetes and obesity. The production of extracellular traps by activated leukocytes in response to a range of inflammatory stimuli is increasingly recognised as an important process within a range of disease settings. We show that exposure of human monocyte-derived macrophages to pathophysiological levels of HOCl results in the dose-dependent extrusion of DNA and histones into the cellular supernatant, consistent with extracellular trap formation. Concurrent with, but independent of these findings, macrophage exposure to HOCl also resulted in an immediate and sustained cytosolic accumulation of Ca2+, culminating in the increased production of cytokines and chemokines. Polarisation of the macrophages prior to HOCl exposure revealed a greater propensity for inflammatory M1 macrophages to produce extracellular traps, whereas alternatively-activated M2 macrophages were less susceptible to HOCl insult. M1 macrophages also produced extracellular traps on exposure to phorbol myristate acetate (PMA), interleukin-8 (IL-8) and tumour necrosis factor α (TNFα). Taken together, these data indicate a potential role for macrophages in mediating extracellular trap formation, which may be relevant in pathological conditions characterised by chronic inflammation or excessive HOCl formation. Graphical abstract

read article »


Clinical imaging of hypoxia: Current status and future directions

Publication date: October 2018 Source: Free Radical Biology and Medicine, Volume 126 Author(s): Paul Bonnitcha, Stuart Grieve, Gemma Figtree AbstractTissue hypoxia is a key feature of many important causes of morbidity and mortality. In pathologies such as stroke, peripheral vascular disease and ischaemic heart disease, hypoxia is largely a consequence of low blood flow induced ischaemia, hence perfusion imaging is often used as a surrogate for hypoxia to guide clinical diagnosis and treatment. Importantly, ischaemia and hypoxia are not synonymous conditions as it is not universally true that well perfused tissues are normoxic or that poorly perfused tissues are hypoxic. In pathologies such as cancer, for instance, perfusion imaging and oxygen concentration are less well correlated, and oxygen concentration is independently correlated to radiotherapy response and overall treatment outcomes. In addition, the progression of many diseases is intricately related to maladaptive responses to the hypoxia itself. Thus there is potentially great clinical and scientific utility in direct measurements of tissue oxygenation. Despite this, imaging assessment of hypoxia in patients is rarely performed in clinical settings. This review summarises some of the current methods used to clinically evaluate hypoxia, the barriers to the routine use of these methods and the newer agents and techniques being explored for the assessment of hypoxia in pathological processes. Graphical abstract

read article »


Redox Biology

iRhom2 loss alleviates renal injury in long-term PM2.5-exposed mice by suppression of inflammation and oxidative stress

Publication date: October 2018 Source: Redox Biology, Volume 19 Author(s): Ge Chenxu, Xu Minxuan, Qin Yuting, Gu Tingting, Lv Jinxiao, Wang Mingxing, Wang Sujun, Ma Yongjie, Lou Deshuai, Li Qiang, Hu Linfeng, Tan Jun AbstractParticulate matter (PM2.5) is a risk factor for organ injury and disease progression, such as lung, brain and liver. However, its effects on renal injury and the underlying molecular mechanism have not been understood. The inactive rhomboid protein 2 (iRhom2), also known as rhomboid family member 2 (Rhbdf2), is a necessary modulator for shedding of tumor necrosis factor-α (TNF-α) in immune cells, and has been explored in the pathogenesis of chronic renal diseases. In the present study, we found that compared to the wild type (iRhom2+/+) mice, iRhom2 knockout (iRhom2-/-) protected PM2.5-exposed mice from developing severe renal injury, accompanied with improved renal pathological changes and functions. iRhom2-/- mice exhibited reduced inflammatory response, as evidenced by the reduction of interleukin 1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α) and IL-18 in kidney samples, which might be, at least partly, through inactivating TNF-α converting enzyme/TNF-α receptors (TACE/TNFRs) and inhibitor of α/nuclear factor κ B (IκBα/NF-κB) signaling pathways. In addition, oxidative stress was also restrained by iRhom2-/- in kidney of PM2.5-exposed mice by enhancing heme oxygenase/nuclear factor erythroid 2-related factor 2 (HO-1/Nrf-2) expressions, and reducing phosphorylated c-Jun N-terminal kinase (JNK). In vitro, blockage of HO-1 or Nrf-2 rescued the inflammatory response and oxidative stress that were reduced by iRhom2 knockdown in PM2.5-incubated RAW264.7 cells. Similar results were observed in JNK activator-treated cells. Taken together, our findings indicated that iRhom2 played an essential role in regulating PM2.5-induced chronic renal damage, thus revealing a potential target for preventing chronic kidney diseases development. Graphical abstract

read article »


Decreases in GSH:GSSG activate vascular endothelial growth factor receptor 2 (VEGFR2) in human aortic endothelial cells

Publication date: October 2018 Source: Redox Biology, Volume 19 Author(s): Priya K. Prasai, Bandana Shrestha, A. Wayne Orr, Christopher B. Pattillo AbstractThe angiogenic capacity of local tissue critically regulates the response to ischemic injury. Elevated reactive oxygen species production, commonly associated with ischemic injury, has been shown to promote phosphorylation of the vascular endothelial growth factor receptor 2 (VEGFR2), a critical regulator of angiogenesis. Previous data from our lab demonstrated that diminished levels of the antioxidant glutathione positively augment ischemic angiogenesis. Here, we sought to determine the relationship between glutathione levels and oxidative stress in VEGFR2 signaling. We reveal that decreasing the ratio of GSH to GSSG with diamide leads to enhanced protein S-glutathionylation, increased reactive oxygen species (ROS) production, and enhanced VEGFR2 activation. However, increasing ROS alone was insufficient in activating VEGFR2, while ROS enhanced VEGF-stimulated VEGFR2 activation at supraphysiological levels. We also found that inhibiting glutathione reductase activity is sufficient to increase VEGFR2 activation and sensitizes cells to ROS-dependent VEGFR2 activation. Taken together, these data suggest that regulation of the cellular GSH:GSSG ratio critically regulates VEGFR2 activation. This work represents an important first step in separating thiol mediated signaling events from ROS dependent signaling. Graphical abstractChanges in GSH:GSSG but not ROS alone activates VEGFR2. This is a brief summary of the manuscript demonstrating that the addition of exogenous H2O2 is insufficient to activate VEGFR2; however decreasing GSH:GSSG results in ligand independent activation of VEGFR2.

read article »


FIH permits NAA10 to catalyze the oxygen-dependent lysyl-acetylation of HIF-1α

Publication date: October 2018 Source: Redox Biology, Volume 19 Author(s): Jengmin Kang, Yang-Sook Chun, June Huh, Jong-Wan Park AbstractThe N-terminal acetyltransferase A (NatA) complex, which is composed of NAA10 and NAA15, catalyzes N-terminal acetylation of many proteins in a co-translational manner. Structurally, the catalytic subunit NAA10 was believed to have no activity toward an internal lysine residue because the gate of its catalytic pocket is too narrow. However, several studies have demonstrated that the monomeric NAA10 can acetylate the internal lysine residues of several substrates including hypoxia-inducible factor 1α (HIF-1α). How NAA10 acetylates lysine residues has been an unsolved question. We here found that human FIH (factor inhibiting HIF) hydroxylates human NAA10 at W38 oxygen-dependently and this permits NAA10 to express the lysyl-acetyltransferase activity. The hydroxylated W38 forms a new hydrogen-bond with A67 and widens the gate at the catalytic pocket, which allows the entrance of a lysine residue to the site. Since the FIH-dependent hydroxylation of NAA10 occurs oxygen-dependently, NAA10 acetylates HIF-1α under normoxia but does not under hypoxia. Consequently, the acetylation promotes the pVHL binding to HIF-1α, and in turn HIF-1α is destructed via the ubiquitin-proteasome system. This study provides a novel oxygen-sensing process that determines the substrate specificity of NAA10 depending on an ambient oxygen tension.

read article »


Transient acceleration of autophagic degradation by pharmacological Nrf2 activation is important for retinal pigment epithelium cell survival

Publication date: October 2018 Source: Redox Biology, Volume 19 Author(s): Yuichi Saito, Yoshiki Kuse, Yuki Inoue, Shinsuke Nakamura, Hideaki Hara, Masamitsu Shimazawa AbstractNon-exudative age-related macular degeneration (AMD) is mainly caused by the accumulation of lipofuscin and drusen on the retinal pigment epithelium (RPE). Both oxidative stress and autophagic dysfunction accelerate the deposition of lipofuscin at the RPE. One of the key regulators in the response against oxidative stress is the NF-E2-Related Factor 2 (Nrf2)-kelch like ECH associated protein 1 (Keap1) axis, which is also closely associated with the autophagy pathway. Nrf2 activation upregulates the expression levels of certain anti-oxidative enzymes [e.g. Heme oxygenase-1 (HO-1)], which attenuates oxidative damage. However, until now, the relationship between cytoprotective effects of Nrf2 activation and autophagic degradation remain unclear. To address these questions, we investigated the effects of a novel Nrf2 activator, RS9, on RPE damage. We found that RS9 protected ARPE-19 cells against NaIO3-induced oxidative damage, and that the protective effects of RS9 were inhibited by co-treatment with zinc protoporphyrin, an HO-1 inhibitor. Next, we examined the involvement of autophagic degradation in the protective effects of RS9. Co-treatment with RS9 and chloroquine, a lysosomal acidification inhibitor, inhibited the protective effect. Furthermore, western blotting and immunostaining showed that RS9 accelerated autophagy flux and induced transient upregulation of p62 [also known as sequestosome 1 (SQSTM1)]. Co-treatment with chloroquine and RS9 also inhibited the degradation of autophagosomes. Transient upregulation of SQSTM1 by RS9 was unaltered by HO-1 knockdown using siRNA. RS9 and chloroquine had the same actions in light damaged adult zebrafish retina as those in vitro. In conclusion, we clarified the relationship between acceleration of the autophagy pathway and the cytoprotective effects of Nrf2 activation in RPE cells and zebrafish

read article »


Sirtuin 3-dependent mitochondrial redox homeostasis protects against AGEs-induced intervertebral disc degeneration

Publication date: October 2018 Source: Redox Biology, Volume 19 Author(s): Yu Song, Shuai Li, Wen Geng, Rongjin Luo, Wei Liu, Ji Tu, Kun Wang, Liang Kang, Huipeng Yin, Xinghuo Wu, Yong Gao, Yukun Zhang, Cao Yang AbstractIntervertebral disc (IVD) degeneration contributes largely to pathoanatomical and degenerative changes of spinal structure that increase the risk of low back pain. Apoptosis in nucleus pulposus (NP) can aggravate IVD degeneration, and increasing studies have shown that interventions targeting NP cell apoptosis can ameliorate IVD degeneration, exhibiting their potential for use as therapeutic strategies. Recent data have shown that advanced glycation end products (AGEs) accumulate in NP tissues in parallel with the progression of IVD degeneration and form a microenvironment of oxidative stress. This study examined whether AGEs accumulation aggravates NP cell apoptosis and IVD degeneration, and explored the mechanisms underlying these effects. We observed that the viability and proliferation of human NP cells were significantly suppressed by AGEs treatment, mainly due to apoptosis. Furthermore, activation of the mitochondrial apoptosis pathway was detected after AGEs treatment. In addition, the molecular data showed that AGEs could significantly aggravate the generation of mitochondrial reactive oxygen species and prolonged activation of the mitochondrial permeability transition pore, as well as the increased level of Bax protein and decreased level of Bcl-2 protein in mitochondria. These effects could be reduced by antioxidant (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (MitoTEMPO) and Visomitin (SKQ1). Importantly, we identified that impairment of Sirtuin3 (SIRT3) function and the mitochondrial antioxidant network were vital mechanisms in AGEs-induced oxidative stress and secondary human NP cell apoptosis. Finally, based on findings that nicotinamide mononucleotide (NMN) could restore SIRT3 function and rescue human NP cell apoptosis through adenosi

read article »