Latest Articles


Free Radical Biology and Medicine (FRBM)

MicroRNAs in cancer cell death pathways: Apoptosis and necroptosis

Publication date: 1 August 2019 Source: Free Radical Biology and Medicine, Volume 139 Author(s): Solmaz Shirjang, Behzad Mansoori, Samira Asghari, Pascal H.G. Duijf, Ali Mohammadi, Morten Gjerstorff, Behzad Baradaran AbstractTo protect tissues and the organism from disease, potentially harmful cells are removed through programmed cell death processes, including apoptosis and necroptosis. These types of cell death are critically controlled by microRNAs (miRNAs). MiRNAs are short RNA molecules that target and inhibit expression of many cellular regulators, including those controlling programmed cell death via the intrinsic (Bcl-2 and Mcl-1), extrinsic (TRAIL and Fas), p53-and endoplasmic reticulum (ER) stress-induced apoptotic pathways, as well as the necroptosis cell death pathway. In this review, we discuss the current knowledge of apoptosis and necroptosis pathways and how these are impaired in cancer cells. We focus on how miRNAs disrupt apoptosis and necroptosis, thereby critically contributing to malignancy. Understanding which and how miRNAs and their targets affect cell death pathways could open up novel therapeutic opportunities for cancer patients. Indeed, restoration of pro-apoptotic tumor suppressor miRNAs (apoptomiRs) or inhibition of oncogenic miRNAs (oncomiRs) represent strategies that are currently being trialed or are already applied as miRNA-based cancer therapies. Therefore, better understanding the cancer type-specific expression of apoptomiRs and oncomiRs and their underlying mechanisms in cell death pathways will not only advance our knowledge, but also continue to provide new opportunities to treat cancer. Graphical abstract

read article »


Dietary intake of inorganic nitrate in vegetarians and omnivores and its impact on blood pressure, resting metabolic rate and the oral microbiome

Publication date: July 2019 Source: Free Radical Biology and Medicine, Volume 138 Author(s): Ann Ashworth, Craig Cutler, Garry Farnham, Luke Liddle, Mia Burleigh, Ana Rodiles, Carla Sillitti, Michele Kiernan, Melanie Moore, Mary Hickson, Chris Easton, Raul Bescos AbstractVegetarian diets are commonly associated with lower blood pressure levels. This has been related to greater consumption of inorganic nitrate, since vegetables are the main source of this anion. Dietary nitrate is reduced to nitrite by commensal bacteria in the mouth, which in turn leads to increased circulatory nitrite availability. Nitrite can form nitric oxide by several pathways promoting a reduction in the vascular tone and lower blood pressure. This study tested whether vegetarians have higher concentrations of nitrite in saliva and plasma, and lower blood pressure and resting metabolic rate (RMR), due to higher intakes of nitrate, compared to omnivores. Following a non-randomized, cross-over and single-blinded design we measured dietary nitrate intake, blood pressure and RMR in young and healthy vegetarians (n = 22) and omnivores (n = 19) with similar characteristics after using placebo or antibacterial mouthwash for a week to inhibit oral bacteria. Additionally, we analyzed salivary and plasma nitrate and nitrite concentrations, as well as the oral nitrate-reduction rate and oral microbiome in both groups. Dietary nitrate intake in vegetarians (97 ± 79 mg/day) was not statistically different (P > 0.05) to omnivores (78 ± 47 mg/day). Salivary and plasma nitrate and nitrite concentrations were similar after placebo mouthwash in both groups (P > 0.05). The oral nitrate-reducing capacity, abundance of oral bacterial species, blood pressure and RMR were also similar between vegetarians and omnivores (P > 0.05). Antibacterial mouthwash significantly decreased abundance of oral nitrate-reducing bacterial species in vegetarians (_16.9%; P < 0.001) and omnivores (_17.4%; P < 0.001), which in turn led to a significant reduction of the oral n

read article »


The endogenous hydrogen sulfide generating system regulates ovulation

Publication date: July 2019 Source: Free Radical Biology and Medicine, Volume 138 Author(s): Anthony Estienne, Valério M. Portela, Yohan Choi, Gustavo Zamberlam, Derek Boerboom, Vickie Roussel, Marie-Charlotte Meinsohn, Mats Brännström, Thomas E. Curry, Misung Jo, Christopher A. Price AbstractThe generation of free-radicals such as nitric oxide has been implicated in the regulation of ovarian function, including ovulation. Tissues that generate nitric oxide typically generate another free-radical gas, hydrogen sulfide (H2S), although little is known about the role of H2S in ovarian function. The hypothesis of this study was that H2S regulates ovulation. Treatment with luteinizing hormone (LH) increased the levels of mRNA and protein of the H2S generating enzyme cystathionine γ-lyase (CTH) in granulosa cells of mice and humans in vivo and in vitro. Pharmacological inhibition of H2S generating enzymes reduced the number of follicles ovulating in mice in vivo and in vitro, and this inhibitory action was reversed by cotreatment with a H2S donor. Addition of a H2S donor to cultured mouse granulosa cells increased basal and LH-dependent abundance of mRNA encoding amphiregulin, betacellulin and tumor necrosis alpha induced protein 6, proteins important for cumulus expansion and follicle rupture. Inhibition of CTH activity reduced abundance of mRNA encoding matrix metalloproteinase-2 and -9 and tissue-type plasminogen activator, and cotreatment with the H2S donor increased the levels of these mRNA above those stimulated by LH alone. We conclude that the H2S generating system plays an important role in the propagation of the preovulatory cascade and rupture of the follicle at ovulation. Graphical abstract

read article »


Bardoxolone ameliorates TGF-β1-associated renal fibrosis through Nrf2/Smad7 elevation

Publication date: July 2019 Source: Free Radical Biology and Medicine, Volume 138 Author(s): Min-Kyun Song, Jin-Hee Lee, In-geun Ryoo, Sang-hwan Lee, Sae-Kwang Ku, Mi-Kyoung Kwak AbstractTransforming growth factor-β (TGF-β) is a potent pathogenic factor of renal injury through the upregulation of extracellular matrix (ECM) expression and facilitation of renal fibrosis. Nuclear factor erythroid 2-like 2 (Nfe2l2; Nrf2), a master regulator of antioxidant and detoxifying systems, is mainly controlled by the binding with cytosolic protein Kelch-like ECH-associated protein 1 (Keap1) and subsequent proteasomal degradation. The protective effect of Nrf2 on renal injury has been attributed to its antioxidant role, where it aids in coping with oxidative stress-associated progression of renal disease. In this study, we investigated the effect of Nrf2 activation on ECM production and TGF-β/Smad signaling using Keap1-silenced MES-13 cells (a genetic glomerular mesangial cell model with Nrf2 overexpression). The TGF-β1-inducible expression of fibronectin and α-smooth muscle actin (α-Sma) was suppressed and Smad2/3 phosphorylation was blocked in Nrf2-high mesangial cells as compared with that in control cells. Notably, in these Nrf2-high mesangial cells, levels of TGF-β1 receptor 1 (TβR1) were substantially diminished, and the protein levels of Smad7, an inhibitor TGF-β1/Smad signaling, were increased. Nrf2-mediated Smad7 elevation and its anti-fibrotic role in Keap1-silenced cells were confirmed by studies with Nrf2-or Smad7-silencing. As a molecular link for Smad7 elevation in Nrf2-high cells, the reduction of Smad-ubiquitination-regulatory factor 1 (Smurf1), an E3 ubiquitin ligase for Smad7, was notable. Silencing of Smurf1 increased Smad7 in the control mesangial cells; however, forced expression of Smurf1 repressed Smad7 levels in Keap1-silenced cells. Additionally, we demonstrate that bardoxolone (BARD; CDDO-methyl), a pharmacological activator of Nrf2, increased Smad7 levels and attenuated TGF-β/Smad/ECM expression in ME

read article »


Early induction of senescence and immortalization in PGC-1α-deficient mouse embryonic fibroblasts

Publication date: July 2019 Source: Free Radical Biology and Medicine, Volume 138 Author(s): Ignacio Prieto, Alberto Zambrano, Javier Laso, Ana Aranda, Enrique Samper, María Monsalve AbstractAimsOxidative stress is known to induce early replicative senescence. Senescence has been proposed to work as a barrier to immortalization and tumor development. Here, we aimed to evaluate the impact of the loss of peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α), a master regulator of oxidative metabolism and mitochondrial reactive oxygen species (ROS) generation, on replicative senescence and immortalization in mouse embryonic fibroblasts (MEFs). ResultsWe found that primary MEFs lacking PGC-1α showed higher levels of ROS than wild-type MEFs at all cell passages tested. The elevated production of ROS was associated with higher levels of oxidative DNA damage and the increased formation of DNA double-strand breaks. Evaluation of the induction of DNA repair systems in response to γ-radiation indicated that the loss of PGC-1α also resulted in a small but significant reduction in their activity. DNA damage induced the early activation of senescence markers, including an increase in the number of β-galactosidase-positive cells, the induction of p53 phosphorylation, and the increase in p16 and p19 protein. These changes were, however, not sufficient to reduce proliferation rates of PGC-1α-deficient MEFs at any cell passage tested. Moreover, PGC-1α-deficient cells escaped replicative senescence. Innovation & conclusionPGC-1α plays an important role in the control of cellular senescence and immortalization. Graphical abstractPGC-1α deficient MEFs showed an exacerbated production of ROS compared to PGC-1α+/+ when serially passaged, these increased ROS levels were associated with the early induction of senescence markers. However, PGC-1α deficient MEFs maintained similar proliferation rates to those of PGC-1α+/+ MEFs and immortalized earlier than PGC-1α+/+ MEFs.

read article »


Redox Biology

Knockout of dihydrofolate reductase in mice induces hypertension and abdominal aortic aneurysm via mitochondrial dysfunction

Publication date: June 2019 Source: Redox Biology, Volume 24 Author(s): Qiang Li, Ji Youn Youn, Kin Lung Siu, Priya Murugesan, Yixuan Zhang, Hua Cai AbstractHypertension and abdominal aortic aneurysm (AAA) are severe cardiovascular diseases with incompletely defined molecular mechanisms. In the current study we generated dihydrofolate reductase (DHFR) knockout mice for the first time to examine its potential contribution to the development of hypertension and AAA, as well as the underlying molecular mechanisms. Whereas the homozygote knockout mice were embryonically lethal, the heterozygote knockout mice had global reduction in DHFR protein expression and activity. Angiotensin II infusion into these animals resulted in substantially exaggerated elevation in blood pressure and development of AAA, which was accompanied by excessive eNOS uncoupling activity (featured by significantly impaired tetrahydrobiopterin and nitric oxide bioavailability), vascular remodeling (MMP2 activation, medial elastin breakdown and adventitial fibrosis) and inflammation (macrophage infiltration). Importantly, scavenging of mitochondrial reactive oxygen species with Mito-Tempo in vivo completely abrogated development of hypertension and AAA in DHFR knockout mice, indicating a novel role of mitochondria in mediating hypertension and AAA downstream of DHFR deficiency-dependent eNOS uncoupling. These data for the first time demonstrate that targeting DHFR-deficiency driven mitochondrial dysfunction may represent an innovative therapeutic option for the treatment of AAA and hypertension.

read article »


Quantification of carbonate radical formation by the bicarbonate-dependent peroxidase activity of superoxide dismutase 1 using pyrogallol red bleaching

Publication date: June 2019 Source: Redox Biology, Volume 24 Author(s): Juan David Figueroa, Eduardo Fuentes-Lemus, Eva Dorta, Victoria Melin, Javiera Cortés-Ríos, Mario Faúndez, David Contreras, Ana Denicola, Beatriz Álvarez, Michael J. Davies, Camilo López-Alarcón AbstractCarbonate radicals (CO3-) are generated by the bicarbonate-dependent peroxidase activity of cytosolic superoxide dismutase (Cu,Zn-SOD, SOD-1). The present work explored the use of bleaching of pyrogallol red (PGR) dye to quantify the rate of CO3- formation from bovine and human SOD-1 (bSOD-1 and hSOD-1, respectively). This approach was compared to previously reported methods using electron paramagnetic resonance spin trapping with DMPO, and the oxidation of ABTS (2,2-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid). The kinetics of PGR consumption elicited by CO3- was followed by visible spectrophotometry. Solutions containing PGR (5–200 μM), SOD-1 (0.3–3 μM), H2O2 (2 mM) in bicarbonate buffer (200 mM, pH 7.4) showed a rapid loss of the PGR absorption band centered at 540 nm. The initial consumption rate (Ri) gave values independent of the initial PGR concentration allowing an estimate to be made of the rate of CO3- release of 24.6 ± 4.3 μM min−1 for 3 μM bSOD-1. Both bSOD-1 and hSOD-1 showed a similar peroxidase activity, with enzymatic inactivation occurring over a period of 20 min. The single Trp residue (Trp32) present in hSOD-1 was rapidly consumed (initial consumption rate 1.2 ± 0.1 μM min−1) with this occurring more rapidly than hSOD-1 inactivation, suggesting that these processes are not directly related. Added free Trp was rapidly oxidized in competition with PGR. These data indicate that PGR reacts rapidly and efficiently with CO3- resulting from the peroxidase activity of SOD-1, and that PGR-bleaching is a simple, fast and cheap method to quantify CO3- release from bSOD-1 and hSOD-1 peroxidase activity. Graphical abstract

read article »


STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3

Publication date: June 2019 Source: Redox Biology, Volume 24 Author(s): Ning Li, Heng Zhou, Haiming Wu, Qingqing Wu, Mingxia Duan, Wei Deng, Qizhu Tang AbstractMountainous evidence suggests that inflammation, cardiomyocyte apoptosis and pyroptosis are involved in the development of sepsis and sepsis-induced cardiomyopathy (SIC). Stimulator of interferon genes (STING) is an indispensable molecule that could regulate inflammation and immune response in multiple diseases. However, the role of STING in cardiovascular disease, especially SIC remains unclear. This study was designed to investigate the potential molecular mechanisms of STING in lipopolysaccharide (LPS)-induced cardiac injury using STING global knockout mice. In wild type mice and cardiomyocytes, LPS stimulation triggered the perinuclear translocation of STING, which further bound to Type-I interferons (IFN) regulatory factor 3 (IRF3) and phosphorylated IRF3. Phosphorylated (P-) IRF3 subsequently translocated into nucleus and increased the expression of NOD-like receptor protein 3 (NLRP3). Knockout of STING in mice significantly improved survival rate and cardiac function, apart from suppressing myocardial and serum inflammatory cytokines, apoptosis, as well as cardiomyocyte pyroptosis. In vitro experiments revealed that NLRP3 overexpression by adenovirus could offset protective effects of STING knockdown in LPS-induced cardiomyocytes. Additionally, LPS stimulation also promoted the production of intracellular reactive oxygen (ROS), which further induced the NLRP3 translocation to the cytoplasm from the nucleus. Dissociative TXNIP could directly interact with cytoplasmic NLRP3 and form inflammasome, eventually triggering cardiomyocyte injury. Collectively, our findings disclose that STING deficiency could alleviate LPS-induced SIC in mice. Hence, targeting STING in cardiomyocytes may be a promising therapeutic strategy for preventing SIC.

read article »


SERPINA3 is a key modulator of HNRNP-K transcriptional activity against oxidative stress in HCC

Publication date: June 2019 Source: Redox Biology, Volume 24 Author(s): Eunkyong Ko, Jong-Seo Kim, Jong Woo Bae, Jeesoo Kim, Sung-Gyoo Park, Guhung Jung AbstractMost studies about serpin peptidase inhibitor, clade A member 3 (SERPINA3) has been limited to its inhibitory functions and mechanisms. Herein, we report a novel role of SERPINA3 in transcriptional regulation of HCC progression-related genes. Among 19 selected genes through HCC cell isolation system based on telomere length, microarray analyses, and cell-based studies, SERPINA3 was the strongest determinant of increases in telomere length, HCC cell proliferation, survival, migration, and invasion. We also found that SERPINA3 strongly interacted with heterogeneous nuclear ribonucleoprotein K (HNRNP-K) under H2O2 exposure, and the oxidation-elicited SERPINA3-HNRNP-K complex enhanced the promoter activities and transcript levels of a telomere-relating gene (POT1) and HCC-promoting genes (UHRF1 and HIST2H2BE). Intriguingly, the inhibition of SERPINA3 oxidation rendered the transcriptional activity of the SERPINA3-HNRNP-K complex suppressed. Moreover, the co-immunoprecipitated HNRNP-K with SERPINA3 quantitatively correlated with not only the level of SERPINA3 oxidation but also the level of POT1, UHRF1, and HIST2H2BE transcripts and telomere length in HCC tissues. Therefore, the upregulated transcriptional activity of HNRNP-K mediated by SERPINA3 promotes HCC cell survival and proliferation and could be an indicator of poor prognosis for HCC patients. Graphical abstract

read article »


Cholesterol enrichment in liver mitochondria impairs oxidative phosphorylation and disrupts the assembly of respiratory supercomplexes

Publication date: June 2019 Source: Redox Biology, Volume 24 Author(s): Estel Solsona-Vilarrasa, Raquel Fucho, Sandra Torres, Susana Nuñez, Natalia Nuño-Lámbarri, Carlos Enrich, Carmen García-Ruiz, José C. Fernández-Checa AbstractMitochondrial cholesterol accumulation is a hallmark of alcoholic and non-alcoholic fatty liver diseases and impairs the function of specific solute carriers through changes in membrane physical properties. However, its impact on mitochondrial respiration and organization of respiratory supercomplexes has not been determined so far. Here we fed mice a cholesterol-enriched diet (HC) supplemented with sodium cholate to examine the effect of cholesterol in mitochondrial function. HC feeding increased liver cholesterol content, which downregulated Srebp2 and Hmgcr expression, while sodium cholate administration decreased Cyp7a1 and Cyp8b1 mRNA levels, suggesting the downregulation of bile acid synthesis through the classical pathway. HC-fed mice exhibited increased expression of Stard1 and Mln64 and enhanced mitochondrial free cholesterol levels (2–3 fold), leading to decreased membrane fluidity. Mitochondria from HC-fed mice displayed increased cholesterol loading in both outer and inner mitochondrial membranes. Cholesterol loading decreased complex I and complex II-driven state 3 respiration and mitochondrial membrane potential. Decreased respiratory and uncoupling control ratio from complex I was also observed after in situ enrichment of mouse liver mitochondria with cholesterol or enantiomer cholesterol, the mirror image of natural cholesterol. Moreover, in vivo cholesterol loading decreased the level of complex III2 and the assembly of respiratory supercomplexes I1+III2+IV and I1+III2. Moreover, HC feeding caused oxidative stress and mitochondrial GSH (mGSH) depletion, which translated in hepatic steatosis and liver injury, effects that were rescued by replenishing mGSH with GSH ethyl ester. Overall, mitochondrial cholesterol accumulation disrupts mitochondrial functional performance an

read article »