Latest Articles


Free Radical Biology and Medicine (FRBM)

Trx-1 ameliorates learning and memory deficits in MPTP-induced Parkinson's disease model in mice

Publication date: 20 August 2018 Source: Free Radical Biology and Medicine, Volume 124 Author(s): Xianwen Zhang, Liping Bai, Se Zhang, Xiaoshuang Zhou, Ye Li, Jie Bai AbstractParkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), characteristic motor symptoms and cognitive impairment. Thioredoxin-1 (Trx-1) is a redox protein and protects neurons from various injuries. Our previous study has shown that Trx-1 overexpression attenuates movement disorder in PD. However, whether Trx-1 ameliorates cognitive deficits in PD is still unknown. In the present study, we investigated the effects of Trx-1 on learning and memory in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model in mice. We demonstrated that deficits in learning and memory were induced by MPTP in mice through the elevated plus-maze test. We found that the retention transfer latency time was shorten, escape latency was decreased and the number of platform crossings was increased in the Morris water maze (MWM) in Trx-1 transgenic (TG) mice when compared with wild type mice. The expressions of tyrosine hydroxylase (TH) and dopamine D1 receptor (D1R) were decreased by MPTP, which were restored in Trx-1 TG mice. The expression of N-methyl-D-aspartate receptor 2B subunit (NR2B), the levels of phosphorylation of extracellular signal-regulated kinase (ERK1/2) and cAMP-response element binding protein (CREB) in the hippocampus were decreased by MPTP, which were reversed in Trx-1 TG mice. These results suggest that Trx-1 ameliorates learning and memory deficits in MPTP-induced PD model in mice via modulating the D1R and the NMDAR-ERK1/2-CREB pathway. Trx-1 may be a therapy target for learning and memory deficits in PD. Graphical abstract

read article »


Targeting redox vulnerability of cancer cells by prooxidative intervention of a glutathione-activated Cu(II) pro-ionophore: Hitting three birds with one stone

Publication date: 20 August 2018 Source: Free Radical Biology and Medicine, Volume 124 Author(s): Xia-Zhen Bao, Fang Dai, Xin-Rong Li, Bo Zhou AbstractAltered redox homeostasis including higher levels of copper, reduced glutathione (GSH) and reactive oxygen species (ROS) in cancer cells than in normal cells illustrates their redox vulnerability, and has opened a window for developing prooxidative anticancer agents (PAAs) to hit this status. However, how to design PAAs with high selectivity in killing cancer cells over normal cells remains a challenge. Herein we designed a 3-hydroxyflavone-inspired copper pro-ionophore (PHF) as a potent PAA based on the GSH-mediated conversion of 2,4-dinitrobenzenesulfonates to enols. Mechanistic investigation reveals that it is capable of exploiting increased levels of GSH in cancer cells to in situ release an active ionophore, 3-hydroxyflavone, inducing redox imbalance (copper accumulation, GSH depletion and ROS generation) and achieving highly selective killing of cancer cells upon specific transport of small amounts of Cu(II). To the best of our knowledge, it is the first example of Cu(II) pro-ionophore type of PAA which hits (changes) the three birds (abnormal copper, GSH and ROS levels in cancer cells) with one stone (PHF) in terms of its ability to induce preferentially redox imbalance of cancer cells by copper accumulation, GSH depletion and ROS generation. Graphical abstract

read article »


C60 fullerene accumulation in human leukemic cells and perspectives of LED-mediated photodynamic therapy

Publication date: 20 August 2018 Source: Free Radical Biology and Medicine, Volume 124 Author(s): Anna Grebinyk, Sergii Grebinyk, Svitlana Prylutska, Uwe Ritter, Olga Matyshevska, Thomas Dandekar, Marcus Frohme AbstractRecent progress in nanobiotechnology has attracted interest to a biomedical application of the carbon nanostructure C60 fullerene since it possesses a unique structure and versatile biological activity. C60 fullerene potential application in the frame of cancer photodynamic therapy (PDT) relies on rapid development of new light sources as well as on better understanding of the fullerene interaction with cells. The aim of this study was to analyze C60 fullerene effects on human leukemic cells (CCRF-CEM) in combination with high power single chip light-emitting diodes (LEDs) light irradiation of different wavelengths: ultraviolet (UV, 365 nm), violet (405 nm), green (515 nm) and red (632 nm). The time-dependent accumulation of fullerene C60 in CCRF-CEM cells up to 250 ng/106 cells at 24 h with predominant localization within mitochondria was demonstrated with immunocytochemical staining and liquid chromatography mass spectrometry. In a cell viability assay we studied photoexcitation of the accumulated C60 nanostructures with ultraviolet or violet LEDs and could prove that significant phototoxic effects did arise. A less pronounced C60 fullerene phototoxic effect was observed after irradiation with green, and no effect was detected with red light. A C60 fullerene photoactivation with violet light induced substantial ROS generation and apoptotic cell death, confirmed by caspase3/7 activation and plasma membrane phosphatidylserine externalization. Our work proved C60 fullerene ability to induce apoptosis of leukemic cells after photoexcitation with high power single chip 405 nm LED as a light source. This underlined the potential for application of C60 nanostructure as a photosensitizer for anticancer therapy. Graphical abstract

read article »


Cannabidiol induced apoptosis in human monocytes through mitochondrial permeability transition pore-mediated ROS production

Publication date: 20 August 2018 Source: Free Radical Biology and Medicine, Volume 124 Author(s): Hsin-Ying Wu, Chung-Hsiung Huang, Yi-Hsuan Lin, Chia-Chi Wang, Tong-Rong Jan AbstractCannabidiol (CBD) has been reported to induce apoptosis in immune cells through oxidative stress-related mechanisms. The objective of the present study was to investigate the cellular mechanisms for CBD-induced apoptosis and oxidative stress in human monocytes. Exposure of freshly isolated human monocytes to CBD induced apoptosis in a time- and concentration-dependent manner. Time-course analyses revealed the induction of intracellular reactive oxygen species (ROS) at 1–2 h post CBD (16 μM) exposure. By comparison, the CBD treatment rapidly elicited the depolarization of mitochondrial membrane potential (MMP) within 5 min, and the oxidation of cardiolipin, a major lipid component of the mitochondrial inner membrane, within 15 min. Moreover, CBD induced the release of cytochrome c (Cyt c) from mitochondria. Mechanistic studies revealed that CBD-induced ROS production and apoptosis were not associated with the alteration of mitochondrial superoxide dismutase activity, the electron leakage through mitochondrial respiratory chain, and Fe2+- and Ca2+-mediated mechanisms. In contrast, CBD-induced apoptosis and MMP depolarization were markedly attenuated by the mitochondrial permeability transition pore (MPTP) inhibitor cyclosporin A (CsA), but not the calcineurin inhibitor FK506. Furthermore, CsA prevented cardiolipin oxidation and the MPTP opening induced by CBD. The present study suggests that CBD acts on the mitochondria to elicit ROS generation and apoptosis through MPTP opening and provides critical insights into the cellular mechanisms for CBD-induced oxidative stress in apoptotic monocytes. Graphical abstract

read article »


High- and low-affinity PEGylated hemoglobin-based oxygen carriers: Differential oxidative stress in a Guinea pig transfusion model

Publication date: 20 August 2018 Source: Free Radical Biology and Medicine, Volume 124 Author(s): Esra'a Alomari, Luca Ronda, Stefano Bruno, Gianluca Paredi, Marialaura Marchetti, Stefano Bettati, Davide Olivari, Francesca Fumagalli, Deborah Novelli, Giuseppe Ristagno, Roberto Latini, Chris E. Cooper, Brandon J. Reeder, Andrea Mozzarelli AbstractHemoglobin-based oxygen carriers (HBOCs) are an investigational replacement for blood transfusions and are known to cause oxidative damage to tissues. To investigate the correlation between their oxygen binding properties and these detrimental effects, we investigated two PEGylated HBOCs endowed with different oxygen binding properties - but otherwise chemically identical - in a Guinea pig transfusion model. Plasma samples were analyzed for biochemical markers of inflammation, tissue damage and organ dysfunction; proteins and lipids of heart and kidney extracts were analyzed for markers of oxidative damage. Overall, both HBOCs produced higher oxidative stress in comparison to an auto-transfusion control group. Particularly, tissue 4-hydroxynonenal adducts, tissue malondialdehyde adducts and plasma 8-oxo-2'-deoxyguanosine exhibited significantly higher levels in comparison with the control group. For malondialdehyde adducts, a higher level in the renal tissue was observed for animals treated with the high-affinity HBOC, hinting at a correlation between the HBOCs oxygen binding properties and the oxidative stress they produce. Moreover, we found that the high-affinity HBOC produced greater tissue oxygenation in comparison with the low affinity one, possibly correlating with the higher oxidative stress it induced. Graphical abstract

read article »


Redox Biology

Redox mechanism of levobupivacaine cytostatic effect on human prostate cancer cells

Publication date: September 2018 Source: Redox Biology, Volume 18 Author(s): Caroline Jose, Etienne Hebert-Chatelain, Nivea Dias Amoedo, Emmanuel Roche, Emilie Obre, Didier Lacombe, Hamid Reza Rezvani, Philippe Pourquier, Karine Nouette-Gaulain, Rodrigue Rossignol AbstractAnti-cancer effects of local anesthetics have been reported but the mode of action remains elusive. Here, we examined the bioenergetic and REDOX impact of levobupivacaine on human prostate cancer cells (DU145) and corresponding non-cancer primary human prostate cells (BHP). Levobupivacaine induced a combined inhibition of glycolysis and oxidative phosphorylation in cancer cells, resulting in a reduced cellular ATP production and consecutive bioenergetic crisis, along with reactive oxygen species generation. The dose-dependent inhibition of respiratory chain complex I activity by levobupivacaine explained the alteration of mitochondrial energy fluxes. Furthermore, the potency of levobupivacaine varied with glucose and oxygen availability as well as the cellular energy demand, in accordance with a bioenergetic anti-cancer mechanism. The levobupivacaine-induced bioenergetic crisis triggered cytostasis in prostate cancer cells as evidenced by a S-phase cell cycle arrest, without apoptosis induction. In DU145 cells, levobupivacaine also triggered the induction of autophagy and blockade of this process potentialized the anti-cancer effect of the local anesthetic. Therefore, our findings provide a better characterization of the REDOX mechanisms underpinning the anti-effect of levobupivacaine against human prostate cancer cells.

read article »


Enoxacin extends lifespan of C. elegans by inhibiting miR-34-5p and promoting mitohormesis

Publication date: September 2018 Source: Redox Biology, Volume 18 Author(s): Silas Pinto, Vitor N. Sato, Evandro A. De-Souza, Rafael C. Ferraz, Henrique Camara, Ana Paula F. Pinca, Diego R. Mazzotti, Michael T. Lovci, Guilherme Tonon, Camila M. Lopes-Ramos, Raphael B. Parmigiani, Martin Wurtele, Katlin B. Massirer, Marcelo A. Mori AbstractAlterations in microRNA (miRNA) processing have been previously linked to aging. Here we used the small molecule enoxacin to pharmacologically interfere with miRNA biogenesis and study how it affects aging in C. elegans. Enoxacin extended worm lifespan and promoted survival under normal and oxidative stress conditions. Enoxacin-induced longevity required the transcription factor SKN-1/Nrf2 and was blunted by the antioxidant N-acetyl-cysteine, suggesting a prooxidant-mediated mitohormetic response. The longevity effects of enoxacin were also dependent on the miRNA pathway, consistent with changes in miRNA expression elicited by the drug. Among these differentially expressed miRNAs, the widely conserved miR-34-5p was found to play an important role in enoxacin-mediated longevity. Enoxacin treatment down-regulated miR-34-5p and did not further extend lifespan of long-lived mir-34 mutants. Moreover, N-acetyl-cysteine abrogated mir-34(gk437)-induced longevity. Evidence also points to double-stranded RNA-specific adenosine deaminases (ADARs) as new targets of enoxacin since ADAR loss-of-function abrogates enoxacin-induced lifespan extension. Thus, enoxacin increases lifespan by reducing miR-34-5p levels, interfering with the redox balance and promoting healthspan.

read article »


Dysregulation of DAF-16/FOXO3A-mediated stress responses accelerates oxidative DNA damage induced aging

Publication date: September 2018 Source: Redox Biology, Volume 18 Author(s): Aditi U. Gurkar, Andria R. Robinson, Yuxiang Cui, Xuesen Li, Shailaja K. Allani, Amanda Webster, Mariya Muravia, Mohammad Fallahi, Herbert Weissbach, Paul D. Robbins, Yinsheng Wang, Eric E. Kelley, Claudette M. St. Croix, Laura J. Niedernhofer, Matthew S. Gill AbstractDNA damage is presumed to be one type of stochastic macromolecular damage that contributes to aging, yet little is known about the precise mechanism by which DNA damage drives aging. Here, we attempt to address this gap in knowledge using DNA repair-deficient C. elegans and mice. ERCC-1-XPF is a nuclear endonuclease required for genomic stability and loss of ERCC1 in humans and mice accelerates the incidence of age-related pathologies. Like mice, ercc-1 worms are UV sensitive, shorter lived, display premature functional decline and they accumulate spontaneous oxidative DNA lesions (cyclopurines) more rapidly than wild-type worms. We found that ercc-1 worms displayed early activation of DAF-16 relative to wild-type worms, which conferred resistance to multiple stressors and was important for maximal longevity of the mutant worms. However, DAF-16 activity was not maintained over the lifespan of ercc-1 animals and this decline in DAF-16 activation corresponded with a loss of stress resistance, a rise in oxidant levels and increased morbidity, all of which were cep-1/ p53 dependent. A similar early activation of FOXO3A (the mammalian homolog of DAF-16), with increased resistance to oxidative stress, followed by a decline in FOXO3A activity and an increase in oxidant abundance was observed in Ercc1-/- primary mouse embryonic fibroblasts. Likewise, in vivo, ERCC1-deficient mice had transient activation of FOXO3A in early adulthood as did middle-aged wild-type mice, followed by a late life decline. The healthspan and mean lifespan of ERCC1 deficient mice was rescued by inactivation of p53. These data indicate that activation of DAF-16/FOXO3A is a highly conserved response to genot

read article »


Matrix metalloproteinase-2-induced epidermal growth factor receptor transactivation impairs redox balance in vascular smooth muscle cells and facilitates vascular contraction

Publication date: September 2018 Source: Redox Biology, Volume 18 Author(s): Alejandro F. Prado, Laena Pernomian, Aline Azevedo, Rute A.P. Costa, Elen Rizzi, Junia Ramos, Adriana F. Paes Leme, Lusiane M. Bendhack, Jose E. Tanus-Santos, Raquel F. Gerlach AbstractIncreased reactive oxygen species (ROS) formation may enhance matrix metalloproteinase (MMP)-2 activity and promote cardiovascular dysfunction. We show for the first time that MMP-2 is upstream of increased ROS formation and activates signaling mechanisms impairing redox balance. Incubation of vascular smooth muscle cells (VSMC) with recombinant MMP-2 increased ROS formation assessed with dihydroethidium (DHE) by flow cytometry. This effect was blocked by the antioxidant apocynin or by polyethylene glycol-catalase (PEG-catalase), and by MMP inhibitors (doxycycline or GM6001). Next, we showed in HEK293 cells that MMP-2 transactivates heparin-binding epidermal growth factor (HB-EGF) leading to EGF receptor (EGFR) activation and increased ROS concentrations. This effect was prevented by the EGFR kinase inhibitor Ag1478, and by phospholipase C (PLC) or protein kinase C (PKC) inhibitors (A778 or chelerythrine, respectively), confirming the involvement of EGFR pathway in MMP-2-induce responses. Next, we showed that intraluminal exposure of aortas to MMP-2 increased vascular MMP-2 levels detected by immunofluorescence and gelatinolytic activity (by in situ zimography) in association with increased ROS formation. This effect was inhibited by MMP inhibitors (phenanthroline or doxycycline) and by apocynin or PEG-catalase. MMP-2 also increased aortic contractility to phenylephrine and this effect was prevented by MMP inhibitor GM6001 and by apocynin or PEG-catalase, showing again that increased ROS formation mediates functional effects of MMP-2. These results show that MMP-2 activates the EGFR and triggers downstream signaling pathways increasing ROS formation and promoting vasoconstriction. These findings may have various implications for cardiovascular diseases. Gr

read article »


Deficiency in the transcription factor NRF2 worsens inflammatory parameters in a mouse model with combined tauopathy and amyloidopathy

Publication date: September 2018 Source: Redox Biology, Volume 18 Author(s): Ana I. Rojo, Marta Pajares, Angel J. García-Yagüe, Izaskun Buendia, Fred Van Leuven, Masayuki Yamamoto, Manuela G. López, Antonio Cuadrado AbstractChronic neuroinflammation is a hallmark of the onset and progression of brain proteinopathies such as Alzheimer disease (AD) and it is suspected to participate in the neurodegenerative process. Transcription factor NRF2, a master regulator of redox homeostasis, controls acute inflammation but its relevance in low-grade chronic inflammation of AD is inconclusive due to lack of good mouse models. We have addressed this question in a transgenic mouse that combines amyloidopathy and tauopathy with either wild type (AT-NRF2-WT) or NRF2-deficiency (AT-NRF2-KO). AT-NRF2-WT mice died prematurely, at around 14 months of age, due to motor deficits and a terminal spinal deformity but AT-NRF2-KO mice died roughly 2 months earlier. NRF2-deficiency correlated with exacerbated astrogliosis and microgliosis, as determined by an increase in GFAP, IBA1 and CD11b levels. The immunomodulatory molecule dimethyl fumarate (DMF), a drug already used for the treatment of multiple sclerosis whose main target is accepted to be NRF2, was tested in this preclinical model. Daily oral gavage of DMF during six weeks reduced glial and inflammatory markers and improved cognition and motor complications in the AT-NRF2-WT mice compared with the vehicle-treated animals. This study demonstrates the relevance of the inflammatory response in experimental AD, tightly regulated by NRF2 activity, and provides a new strategy to fight AD. Graphical abstract

read article »