Latest Articles


Free Radical Biology and Medicine (FRBM)

Downregulation of glycine decarboxylase enhanced cofilin-mediated migration in hepatocellular carcinoma cells

Publication date: 20 May 2018 Source:Free Radical Biology and Medicine, Volume 120 Author(s): Hao Zhuang, Qiang Li, Xinran Zhang, Xuda Ma, Zun Wang, Yun Liu, Xianfu Yi, Ruibing Chen, Feng Han, Ning Zhang, Yongmei Li Metabolic reprogramming is a hallmark of cancer. Glycine decarboxylase (GLDC), an oxidoreductase, plays an important role in amino acid metabolism. While GLDC promotes tumor initiation and proliferation in non-small cell lung cancer and glioma and it was reported as a putative tumor suppressor gene in gastric cancer, the role of GLDC in hepatocellular carcinoma (HCC) is unknown. In the current study, microarray-based analysis suggested that GLDC expression was low in highly malignant HCC cell lines, and clinicopathological analysis revealed a decrease in GLDC in HCC tumor samples. While the knockdown of GLDC enhanced cancer cell migration and invasion, GLDC overexpression inhibited them. Mechanistic studies revealed that GLDC knockdown increased the levels of reactive oxygen species (ROS) and decreased the ratio of glutathione/oxidized glutathione (GSH/GSSG), which in turn dampened the ubiquitination of cofilin, a key regulator of actin polymerization. Consequently, the protein level of cofilin was elevated, which accounted for the increase in cell migration. The overexpression of GLDC reversed the phenotype. Treatment with N-acetyl-L-cysteine decreased the protein level of cofilin while treatment with H2O2 increased it, further confirming the role of ROS in regulating cofilin degradation. In a tumor xenographic transplant nude mouse model, the knockdown of GLDC promoted intrahepatic metastasis of HCC while GLDC overexpression inhibited it. Our data indicate that GLDC downregulation decreases ROS-mediated ubiquitination of cofilin to enhance HCC progression and intrahepatic metastasis. Graphical abstract

read article »


An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation

Publication date: 20 May 2018 Source:Free Radical Biology and Medicine, Volume 120 Author(s): Jie Zhang, Zhi-wei Ye, Shweta Singh, Danyelle M. Townsend, Kenneth D. Tew By nature of the reversibility of the addition of glutathione to low pKa cysteine residues, the post-translational modification of S-glutathionylation sanctions a cycle that can create a conduit for cell signaling events linked with cellular exposure to oxidative or nitrosative stress. The modification can also avert proteolysis by protection from over-oxidation of those clusters of target proteins that are substrates. Altered functions are associated with S-glutathionylation of proteins within the mitochondria and endoplasmic reticulum compartments, and these impact energy production and protein folding pathways. The existence of human polymorphisms of enzymes involved in the cycle (particularly glutathione S-transferase P) create a scenario for inter-individual variance in response to oxidative stress and a number of human diseases with associated aberrant S-glutathionylation have now been identified. Graphical abstract

read article »


Nrf2 inhibits oxaliplatin-induced peripheral neuropathy via protection of mitochondrial function

Publication date: 20 May 2018 Source:Free Radical Biology and Medicine, Volume 120 Author(s): Yang Yang, Lan Luo, Xueting Cai, Yuan Fang, Jiaqi Wang, Gang Chen, Jie Yang, Qian Zhou, Xiaoyan Sun, Xiaolan Cheng, Huaijiang Yan, Wuguang Lu, Chunping Hu, Peng Cao Oxaliplatin-induced peripheral neuropathy (OIPN) is a severe, dose-limiting toxicity associated with cancer chemotherapy. The efficacy of antioxidant administration in OIPN is debatable, as the promising preliminary results obtained with a number of antioxidants have not been confirmed in larger clinical trials. Besides its antioxidant activity, the transcription factor, nuclear factor-erythroid 2 (NF-E2) p45-related factor 2 (Nrf2) plays a crucial role in the maintenance of mitochondrial homeostasis, and mitochondrial dysfunction is a key contributor to OIPN. Here, we have investigated the protective properties of Nrf2 in OIPN. Nrf2 -/- mice displayed severe mechanical allodynia and cold sensitivity and thus experienced increased peripheral nervous system injury compared to Nrf2 +/+ mice. Furthermore, Nrf2 knockout aggravated oxaliplatin-induced reactive oxygen species production, decreased the mitochondrial membrane potential, led to abnormal intracellular calcium levels, and induced cytochrome c-related apoptosis and overexpression of the TRP protein family. Sulforaphane-induced activation of the Nrf2 signaling pathway alleviated morphological alterations, mitochondrial dysfunction in dorsal root ganglion neurons, and nociceptive sensations in mice. Our findings reveal that Nrf2 may play a critical role in ameliorating OIPN, through protection of mitochondrial function by alleviating oxidative stress and inhibiting TRP protein family expression. This suggests that pharmacological or therapeutic activation of Nrf2 may be used to prevent or slow down the progression of OIPN. Graphical abstract

read article »


Nitrite exerts antioxidant effects, inhibits the mTOR pathway and reverses hypertension-induced cardiac hypertrophy

Publication date: 20 May 2018 Source:Free Radical Biology and Medicine, Volume 120 Author(s): Danielle A. Guimaraes, Madla A. dos Passos, Elen Rizzi, Lucas C. Pinheiro, Jefferson H. Amaral, Raquel F. Gerlach, Michele M. Castro, Jose E. Tanus-Santos Cardiac hypertrophy is a common consequence of chronic hypertension and leads to heart failure and premature death. The anion nitrite is now considered as a bioactive molecule able to exert beneficial cardiovascular effects. Previous results showed that nitrite attenuates hypertension-induced increases in reactive oxygen species (ROS) production in the vasculature. Whether antioxidant effects induced by nitrite block critical signaling pathways involved in cardiac hypertrophy induced by hypertension has not been determined yet. The Akt/mTOR signaling pathway is responsible to activate protein synthesis during cardiac remodeling and is activated by increased ROS production, which is commonly found in hypertension. Here, we investigated the effects of nitrite treatment on cardiac remodeling and activation of this hypertrophic signaling pathway in 2 kidney-1 clip (2K1C) hypertension. Sham and 2K1C rats were treated with oral nitrite at 1 or 15 mg/kg for four weeks. Nitrite treatment (15 mg/kg) reduced systolic blood pressure and decreased ROS production in the heart tissue from hypertensive rats. This nitrite dose also blunted hypertension-induced activation of mTOR pathway and cardiac hypertrophy. While the lower nitrite dose (1 mg/kg) did not affect blood pressure, it exerted antioxidant effects and tended to attenuate mTOR pathway activation and cardiac hypertrophy induced by hypertension. Our findings provide strong evidence that nitrite treatment decreases cardiac remodeling induced by hypertension as a result of its antioxidant effects and downregulation of mTOR signaling pathway. This study may help to establish nitrite as an effective therapy in hypertension-induced cardiac hypertrophic remodeling. Graphical abstract

read article »


Macrophage-derived superoxide production and antioxidant response following skeletal muscle injury

Publication date: 20 May 2018 Source:Free Radical Biology and Medicine, Volume 120 Author(s): Emmeran Le Moal, Gaëtan Juban, Anne Sophie Bernard, Tamas Varga, Clotilde Policar, Bénédicte Chazaud, Rémi Mounier Macrophages are key players of immunity that display different functions according to their activation states. In a regenerative context, pro-inflammatory macrophages (Ly6Cpos) are involved in the mounting of the inflammatory response whereas anti-inflammatory macrophages (Ly6Cneg) dampen the inflammation and promote tissue repair. Reactive oxygen species (ROS) production is a hallmark of tissue injury and of subsequent inflammation as described in a bacterial challenge context. However, whether macrophages produce ROS following a sterile tissue injury is uncertain. In this study, we used complementary in vitro, ex vivo and in vivo experiments in mouse to show that macrophages do not release ROS following a sterile injury in skeletal muscle. Furthermore, expression profiles of genes involved in the response to oxidative stress in Ly6Cpos and Ly6Cneg macrophage subsets did not indicate any antioxidant response in this context. Finally, in vivo, pharmacological antioxidant supplementation with N-Acetyl-cysteine (NAC) following skeletal muscle injury did not alter macrophage phenotype during skeletal muscle regeneration. Overall, these results indicate that following a sterile injury, macrophage-derived ROS release is not involved in the regulation of the inflammatory response in the regenerating skeletal muscle. Graphical abstract

read article »


Redox Biology

High circulatory leptin mediated NOX-2-peroxynitrite-miR21 axis activate mesangial cells and promotes renal inflammatory pathology in nonalcoholic fatty liver disease

Publication date: July 2018 Source:Redox Biology, Volume 17 Author(s): Firas Alhasson, Ratanesh Kumar Seth, Sutapa Sarkar, Diana A. Kimono, Muayad S. Albadrani, Diptadip Dattaroy, Varun Chandrashekaran, Geoffrey I. Scott, Samir Raychoudhury, Mitzi Nagarkatti, Prakash Nagarkatti, Anna Mae Diehl, Saurabh Chatterjee High circulatory insulin and leptin followed by underlying inflammation are often ascribed to the ectopic manifestations in non-alcoholic fatty liver disease (NAFLD) but the exact molecular pathways remain unclear. We have shown previously that CYP2E1-mediated oxidative stress and circulating leptin in NAFLD is associated with renal disease severity. Extending the studies, we hypothesized that high circulatory leptin in NAFLD causes renal mesangial cell activation and tubular inflammation via a NOX2 dependent pathway that upregulates proinflammatory miR21. High-fat diet (60% kcal) was used to induce fatty liver phenotype with parallel insulin and leptin resistance. The kidneys were probed for mesangial cell activation and tubular inflammation that showed accelerated NASH phenotype and oxidative stress in the liver. Results showed that NAFLD kidneys had significant increases in α-SMA, a marker of mesangial cell activation, miR21 levels, tyrosine nitration and renal inflammation while they were significantly decreased in leptin and p47 phox knockout mice. Micro RNA21 knockout mice showed decreased tubular immunotoxicity and proinflammatory mediator release. Mechanistically, use of NOX2 siRNA or apocynin,phenyl boronic acid (FBA), DMPO or miR21 antagomir inhibited leptin primed-miR21-mediated mesangial cell activation in vitro suggesting a direct role of leptin-mediated NOX-2 in miR21-mediated mesangial cell activation. Finally, JAK-STAT inhibitor completely abrogated the mesangial cell activation in leptin-primed cells suggesting that leptin signaling in the mesangial cells depended on the JAK-STAT pathway. Taken together the study reports a novel mechanistic pathway of lep

read article »


IDH2 deficiency accelerates skin pigmentation in mice via enhancing melanogenesis

Publication date: July 2018 Source:Redox Biology, Volume 17 Author(s): Jung Hyun Park, Hyeong Jun Ku, Jin Hyup Lee, Jeen-Woo Park Melanogenesis is a complex biosynthetic pathway regulated by multiple agents, which are involved in the production, transport, and release of melanin. Melanin has diverse roles, including determination of visible skin color and photoprotection. Studies indicate that melanin synthesis is tightly linked to the interaction between melanocytes and keratinocytes. α-melanocyte-stimulating hormone (α-MSH) is known as a trigger that enhances melanin biosynthesis in melanocytes through paracrine effects. Accumulated reactive oxygen species (ROS) in skin affects both keratinocytes and melanocytes by causing DNA damage, which eventually leads to the stimulation of α-MSH production. Mitochondria are one of the main sources of ROS in the skin and play a central role in modulating redox-dependent cellular processes such as metabolism and apoptosis. Therefore, mitochondrial dysfunction may serve as a key for the pathogenesis of skin melanogenesis. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) is a key enzyme that regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury through the generation of NADPH. Downregulation of IDH2 expression resulted in an increase in oxidative DNA damage in mice skin through ROS-dependent ATM-mediated p53 signaling. IDH2 deficiency also promoted pigmentation on the dorsal skin of mice, as evident from the elevated levels of melanin synthesis markers. Furthermore, pretreatment with mitochondria-targeted antioxidant mito-TEMPO alleviated oxidative DNA damage and melanogenesis induced by IDH2 deficiency both in vitro and in vivo. Together, our findings highlight the role of IDH2 in skin melanogenesis in association with mitochondrial ROS and suggest unique therapeutic strategies for the prevention of skin pigmentation. Graphical abstract

read article »


GCN2 deficiency ameliorates doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and myocardial oxidative stress

Publication date: July 2018 Source:Redox Biology, Volume 17 Author(s): Yue Wang, Tong Lei, Juntao Yuan, Yongguang Wu, Xiyue Shen, Junling Gao, Wei Feng, Zhongbing Lu The clinical use of doxorubicin for cancer therapy is limited by its cardiotoxicity, which involves cardiomyocyte apoptosis and oxidative stress. Previously, we showed that general control nonderepressible 2 (GCN2), an eukaryotic initiation factor 2α (eIF2α) kinase, impairs the ventricular adaptation to chronic pressure overload by affecting cardiomyocyte apoptosis. However, the impact of GCN2 on Dox-induced cardiotoxicity has not been investigated. In the present study, we treated wild type (WT) and Gcn2 −/− mice with four intraperitoneal injections (5 mg/kg/week) to induce cardiomyopathy. After Dox treatment, Gcn2 −/− mice developed less contractile dysfunction, myocardial fibrosis, apoptosis, and oxidative stress compared with WT mice. In the hearts of the Dox-treated mice, GCN2 deficiency attenuated eIF2α phosphorylation and induction of its downstream targets, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), and preserved the expression of anti-apoptotic factor Bcl-2 and mitochondrial uncoupling protein-2(UCP2). Furthermore, we found that GCN2 knockdown attenuated, whereas GCN2 overexpression exacerbated, Dox-induced cell death, oxidative stress and reduction of Bcl-2 and UCP2 expression through the eIF2α-CHOP-dependent pathway in H9C2 cells. Collectively, our data provide solid evidence that GCN2 has a marked effect on Dox induced myocardial apoptosis and oxidative stress. Our findings suggest that strategies to inhibit GCN2 activity in cardiomyocyte may provide a novel approach to attenuate Dox-related cardiotoxicity. Graphical abstract

read article »


The phosphorylated redox proteome of Chlamydomonas reinhardtii: Revealing novel means for regulation of protein structure and function

Publication date: July 2018 Source:Redox Biology, Volume 17 Author(s): Evan W. McConnell, Emily G. Werth, Leslie M. Hicks Post-translational modifications (PTMs) are covalent modifications to protein residues which may alter both conformation and activity, thereby modulating signaling and metabolic processes. While PTMs have been largely investigated independently, examination into how different modification interact, or crosstalk, will reveal a more complete understanding of the reciprocity of signaling cascades across numerous pathways. Combinatorial reversible thiol oxidation and phosphorylation in eukaryotes is largely recognized, but rigorous approaches for experimental discovery are underdeveloped. To begin meaningful interrogation of PTM crosstalk in systems biology research, knowledge of targeted proteins must be advanced. Herein, we demonstrate protein-level enrichment of reversibly oxidized proteoforms in Chlamydomonas reinhardtii with subsequent phosphopeptide analysis to determine the extent of phosphorylation in the redox thiol proteome. Label-free quantification was used to quantify 3353 oxidized Cys-sites on 1457 enriched proteins, where sequential phosphopeptide enrichment measured 1094 sites of phosphorylation on 720 proteins with 23% (172 proteins) also identified as reversibly oxidized. Proteins identified with both reversible oxidation and phosphorylation were involved in signaling transduction, ribosome and translation-related machinery, and metabolic pathways. Several redox-modified Calvin-Benson cycle proteins were found phosphorylated and many kinases/phosphatases involved in phosphorylation-dependent photosynthetic state transition and stress-response pathways had sites of reversible oxidation. Identification of redox proteins serves as a crucial element in understanding stress response in photosynthetic organisms and beyond, whereby knowing the ensemble of modifications co-occurring with oxidation highlights novel mechanisms for cellular control. Graphical abstract

read article »


Nrf2 deficiency exacerbates age-related contractile dysfunction and loss of skeletal muscle mass

Publication date: July 2018 Source:Redox Biology, Volume 17 Author(s): Bumsoo Ahn, Gavin Pharaoh, Pavithra Premkumar, Kendra Huseman, Rojina Ranjit, Michael Kinter, Luke Szweda, Tamas Kiss, Gabor Fulop, Stefano Tarantini, Anna Csiszar, Zoltan Ungvari, Holly Van Remmen Graphical abstract

read article »