Why do we expect flavonoids to function as antioxidants *in vivo*?

Catherine Rice-Evans PhD, DSc, FRCPath
Antioxidant Research Group
Wolfson Centre for Age-Related Diseases
Guy’s, King’s & St. Thomas’s School of Biomedical Sciences
King’s College, University of London
FLAVONOIDS:
FOCUS OF MUCH CURRENT NUTRITIONAL
AND THERAPEUTIC INTEREST

- CARDIOPROTECTION
 Role for flavonoid-rich dietary components in reduc
tion in risk of cardiovascular disease

- NEUROPROTECTION
 Anthocyanin-rich fruit associated with protes
tion against age-related decline in cognitive function

- CHEMOPREVENTION
Flavonoids: naturally occurring low molecular wt phenols consisting of 2 benzene rings linked via a heterocyclic pyrone or pyran ring -> patterns and substitutions comprising the sub-classes:

- **Anthocyanin** - berries
- **Flavanone** - citrus
- **Flavanol** - red wine, teas, chocolate, fruit
- **Flavonol** - fruit, vegetables
- **Hydroxycinnamates** - most fruit & some vegetables
Flavonol
e.g. quercetin
onion, cranberry, red apple
many fruit and vegetables

Flavanol
e.g. epicatechin
red wine, green tea,
as procyanidins in apple, chocolate

Flavanone
e.g. hesperetin
Citrus fruit, orange

Hydroxycinnamate
e.g. caffeic acid
most fruit especially tomato, apple
some vegetables e.g. eggplant, grains

Anthocyanidin
e.g. cyanidin
major constituents of dark
red fruit berries e.g. raspberries

Flavanone
SMALL DIFFERENCES IN STRUCTURE → LARGE CHANGES IN BIOLOGICAL ACTIVITIES

Number and specific positions of OH groups / nature of substitutions determine whether flavonoids function as:

- antioxidant, anti-inflammatory, cytotoxic or antimutagenic agents in vitro or in vivo.

- Antioxidant/pro-oxidant activities
- Enzyme induction / inhibition
- Cell proliferation / growth inhibition
- Lipophilicity / polarity - cellular access
PROTECTIVE PROPERTIES OF FLAVONOIDS AGAINST OXIDATIVE STRESS ARE STRUCTURE-DEPENDENT

• Scavengers of reactive oxygen species - H-donating abilities
• Transition metal chelators – catechol requirement?
• Scavengers of reactive nitrogen species nitric oxide, peroxynitrite etc – nitration or oxidation?
• Non-antioxidant mechanisms - modulation of signaling pathways, gene expression
STRUCTURAL REQUIREMENTS FOR H-DONATING ANTIOXIDANT ACTIVITY:

ortho-dihydroxy substitution in B-ring
2,3-unsaturation in C-ring
4-carbonyl group

Bors *et al.* 1990; Rice-Evans *et al.* 1996;

QUERCETIN
<table>
<thead>
<tr>
<th>CATECHOLS</th>
<th>Reduction potentials E<sub>7</sub></th>
<th>Antioxidant activity TEAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>quercetin</td>
<td>0.33</td>
<td>4.7</td>
</tr>
<tr>
<td>epicatechisin</td>
<td>0.57</td>
<td>2.4</td>
</tr>
<tr>
<td>MONOHYDROXY B-RING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kaempferol</td>
<td>0.75</td>
<td>1.3</td>
</tr>
<tr>
<td>hesperetin</td>
<td>0.72</td>
<td>0.9</td>
</tr>
<tr>
<td>ALKYLPEROXYL RADICAL</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>VITAMIN C</td>
<td>0.25</td>
<td></td>
</tr>
</tbody>
</table>

Jovanovic et al. 1998; Rice-Evans et al. 1996
STRUCTURAL DETERMINANTS OF CYTOTOXICITY

- Ease of oxidation – catechol vs monophenolic

- Lipophilicity
OXIDATION OF QUERCETIN

Damage through adduct formation with proteins, GSH, RNA and DNA

Quercetin

Quercetin-7-quinone methide

Quercetin-5-quinone methide

α-quinone
STRUCTURAL DEPENDENCE OF PEROXIDATIVE METABOLISM OF FLAVONOIDS – *monophenolic B-ring*

\[\text{FlavOH} + \text{ferryl radical} \rightarrow \text{FlavO}^\bullet \quad \text{Phenoxyl radical} \]

\[\text{FlavO}^\bullet + \text{GSH} \rightarrow \text{GS}^\bullet \quad \text{Thiyl radical} \]

\[\text{GS}^\bullet + \text{O}_2 \rightarrow \text{Reactive oxygen species} \rightarrow \text{GSSG} \]

Galati et al. 2002
WHAT’S HAPPENING IN VIVO?
STRUCTURAL CHANGES ON ABSORPTION

Influence of conjugation and metabolism on structural parameters governing biological properties
MAJOR METABOLIZING ENZYMES:
small intestine / liver / colon

- Glucosidases
- UDP-glucuronosyl transferases
- Catechol-O-methyl transferases
- Sulfotransferases
- Hydrolases
- Esterases
- Cytochrome P450s

OTHERS:
- Glutathione-S transferases
- Quinone reductases
Absorption and Biotransformation of Dietary Flavonoids *In Vivo*

- **Stomach**
- **Small Intestine**
 - jejunum
 - ileum
- **Colon**
- **Gut microflora**
- **Oligomeric Flavonoids** → **Oligomers cleaved** → **Monomeric units**
- **Phase I and II metabolism**
- **Portal vein**
- **Liver**
 - **Further metabolism**
 - O-methylated
 - Sulphates
 - glucuronides
 - glucuronides
- **Kidney**
 - **Renal excretion of glucuronides**
- **Urine**
- **SKIN AND BRAIN cells**
- **Renal excretion** of glucuronides

Flavonoid → **Phenolic acids**

Gut microflora
POTENTIAL MOLECULAR SITES OF METABOLIC MODIFICATION

- glucuronidation
- sulphation
- methylation
- oxidation
- cleavage
EFFECTS OF METABOLISM ON FLAVONOID STRUCTURES – IMPLICATIONS FOR BIOLOGICAL PROPERTIES

epicatechin

3'-O-methyl-epicatechin

epicatechin-7-β-D-glucuronide

4'-O-methyl-epicatechin-7-β-D-glucuronide
STRUCTURAL FACTORS INFLUENCING INTRACELLULAR ANTIOXIDANT PROPERTIES

- Reduction potentials of resulting conjugates
- Cellular access and partition coefficients
- Intracellular/extracellular metabolism and structural modifications
FLAVONOIDS CAN BE EXTENSIVELY METABOLISED BY cytP450s
-> metabolites with modified biological activities–human liver microsomes

Breinholt et al. 2002
STRUCTURAL CONSEQUENCES OF INTRACELLULAR METABOLISM

quercetin

4'-O-methyl quercetin

demethylation

3'-O-methyl quercetin

GSH, cys, protein thiol

glucuronide/glucoside

GSH, cys, protein thiol

??

GLUTATHIONE
Quercetin

RT: 55.43

Quercetin

3´-O-Me-quercetin

Spencer et al. 2002
COLONIC BIOTRANSFORMATION

WHAT’S HAPPENING IN THE COLON?

Majority of ingested flavonoids undergo colonic metabolism
small intestine
bacterial numbers:
c.a. 10^4-10^6/ml contents
e.g. lactobacilli,
Gram positive cocci

stomach
bacterial numbers:
c.a. 10^3/ml contents
e.g. Helicobacter pylori

colon
bacterial numbers:
c.a. 10^{12}/g contents
bacteroides, bifidobacteria, clostridia, peptostreptococci, fusobacteria, lactobacilli, enterobacteria, enterococci, eubacteria, methanogens, sulphate reducers etc
Pathway of the colonic degradation of rutin - implications for properties of in vivo metabolites

Deglycosylation

Ring fission, water elimination, dehydroxylation

Further degradation

Protocatechuic acid

β-Oxidation + glycination

3-hydroxyhippuric acid

Absorption from the colon

Rutin

Deglycosylation

3,4-dihydroxyphenylacetic acid

Dehydroxylation

3-hydroxyphenylacetic acid

Quercetin

β-Oxidation + glycination

3-hydroxyhippuric acid
MAJOR COLONIC METABOLITES

- 3,4-dihydroxyphenyl acetic acid
- 3-(3-hydroxyphenyl)propionic acid
- 3-(4-hydroxyphenyl)propionic acid
- Hydroxybenzoates
SO DO WE EXPECT FLAVONOID TO
BE ANTIOXIDANTS IN VIVO?

IT DEPENDS:

- on what we mean by ‘antioxidation’

- on the extent and structural consequences of conjugation and metabolism
BIOAVAILABILITY AND METABOLISM OF FLAVONOIDS

• Less bioavailable than ascorbate and tocopherols

• MODIFIED by metabolism on absorption

• Less extensively absorbed and circulating levels *in vivo* much lower
PLASMA LEVELS OF FLAVONOID CONJUGATES

<table>
<thead>
<tr>
<th>Flavan-3-ol:</th>
<th>100 nM</th>
<th>METHYL + SULPHATE +GLUCURONIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wine catechins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procyanidin:</td>
<td>4 uM; 0.26 uM;</td>
<td>EPICATECHIN SULPHATE + GLUCURONIDE</td>
</tr>
<tr>
<td>Chocolate/cocoa</td>
<td>0.7 uM</td>
<td></td>
</tr>
<tr>
<td>Flavanone – grapefruit/orange</td>
<td>< 4 uM</td>
<td>NARINGENIN/HESPERETIN GLUCURONIDE</td>
</tr>
<tr>
<td>Anthocyanin – berry juices</td>
<td>100 nM; 147 nM</td>
<td>ANTHOCYANIN GLYCOSIDES</td>
</tr>
</tbody>
</table>

Donovan et al., Keen et al., Baba et al., Ameer et al, Miyazawa et al.
IN VIVO METABOLITE FORMS VERSUS CELLULAR OXIDATIVE STRESS

Increase in Absorbance (405 nm)

Control H₂O₂ (50 µM) EC MeEC EC Gluc

All 30 µM

H₂O₂ (50 µM)

METHYLATED METABOLITE
Lower H-donating potential – *modified catechol group*
Similar protective effects against oxidative stress-induced cell death

GLUCURONIDE METABOLITE
Marginally lower H-donating potential
No protective effects against oxidative stress-induced cell death - *inaccessibility or substituted A-ring?* SPENCER et al. 2001
PROTECTION OF NEURONS FROM OXIDATIVE STRESS-INDUCED CELL DEATH BY EPICATECHIN

I Control neurons
II Neurons exposed to oxidative stress
III Control neurons treated with epicatechin
IV Neurons pretreated with epicatechin prior to oxidative stress

Schroeter et al. 2000
CONCLUSIONS:

- BIOACTIVITY OF FLAVONOIDs *in vivo* MAY NOT DEPEND ON THEIR ACTIVITIES AS DIRECT SCAVENGERS OF REACTIVE OXYGEN OR NITROGEN SPECIES *PER SE*

- BUT RATHER ON THE INFLUENCE OF THEIR *IN VIVO* FORMS ON THE MODULATION OF ENZYME / PROTEIN FUNCTIONS, INTRACELLULAR CELL SIGNALLING AND RECEPTOR ACTIVITIES