Lifetimes of free radicals & excited states in biology:

when fast means slow and glowing means snuggling up

Peter Wardman

Our text for today

Conclusions

THINK about Thermodynamics and Kinetics For Understanding and Success

(From: Oxygen 2001 *Sunrise Free Radical School* **Free Radical Basics: Concepts and Considerations**Garry R. Buettner, Ph.D.)

http://www.medicine.uiowa.edu/FRRB/SRFRS/SRFRS-papers/SFRS-2001-BuettnerG.pdf

Kinetics: quantitation of radical reactions

What happens?

ruling in/out likely/unlikely reactions

How fast?

z rate constants, concentrations, timescales

How much?

competing and reversible reactions, rate-limiting steps, steady-state concentrations

How far?

lifetimes and diffusion distances

∠ How near − and where?

mapping oxygen, protein/protein interactions

An acronym-free zone – but a few symbols

Common symbols

```
k rate constant (n.b. lower case)
```

K equilibrium constant (upper case)

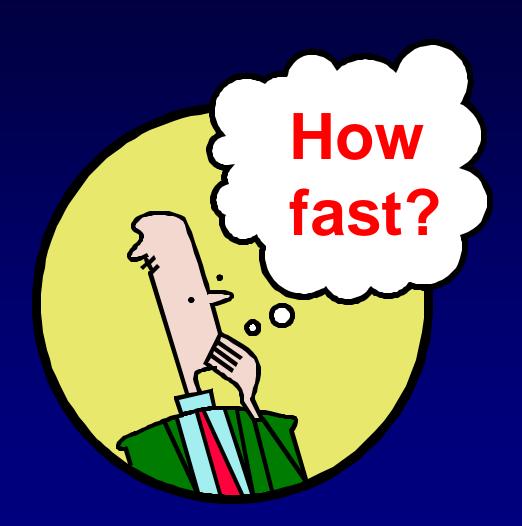
[X] concentration of species X

t_{1/2} half-life

? lifetime of excited state = 1 / k

Linking rate constants to reaction numbers

 $k_{\rm n}$ rate constant of reaction (n)


 k_{-n} rate constant of reverse reaction

of equilibrium (n)

 $k_{\rm f}$ ($k_{\rm r}$) rate constant of forward (reverse) reaction of equilibrium

Rate constants, concentrations, timescales

Rate constants (coefficients) are the key

The **rate** of a reaction is often proportional to concentration (denoted by square brackets)

The rate constant k quantifies this proportionality

 \angle the larger the value of k, the higher the reactivity

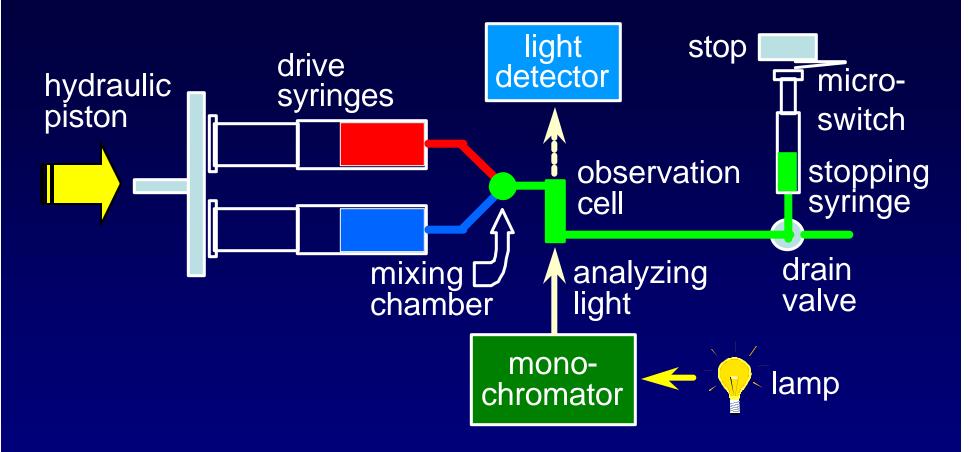
Rate is not the same as rate constant

- Rate of a reaction is the rate of formation of a product, or rate of loss of a reactant
 - units: concentration (molar if in solution) per unit time
- **Rate constant** (k, not K) characterizes reactivity rather than the rate under specific conditions
 - units vary with reaction type

 - ∠ M⁻¹ s⁻¹ (dm³ mol⁻¹ s⁻¹) for bimolecular reactions
- Even (especially?) experts often wrongly use 'rate' when they should use 'rate constant'
 - reactions with high rate constants are not always fast

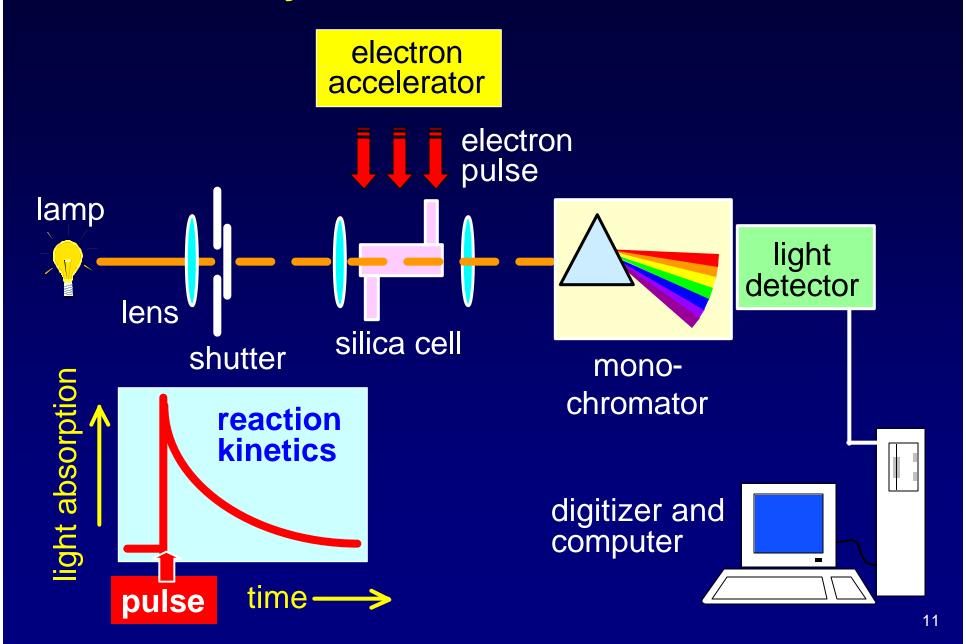
Rate constants: pounds before pennies

Rate constants can span many orders of magnitude, so the exponent is most important:


$$\approx k(O_2^{-} + ascorbate) = 5.0 ? 10^4 M^{-1} s^{-1}$$

- $k(O_2^{-} + \text{nitric oxide}) ? (3.8 to 15) ? 10^{9} M^{-1} s^{-1}$
- **✓ Upper limit:** reactions limited only by diffusion of species (related to viscosity ?, k_{diff} ? 8 RT / (3 ??))
- Most experimental values at room temperature
 - ★ for electron transfer from nitroarene radical anion to oxygen increases ~ 2-fold between 25°C and 37°C

Rate constants of radical/fast reactions


- Monitor radical, reactant or product vs. time
 - most radicals are short-lived, or reaction is fast
 - generate radicals in short time (pulse, flash)
 - needs high time resolution (micro- to milli-seconds)
- Measure stable product during/at end of reaction
 - two competing reactions (known reference)
- Measure concentrations at steady-state
 - needs information about competing reactions
 - steady-state concentrations may be extremely low

Stopped-flow rapid-mixing

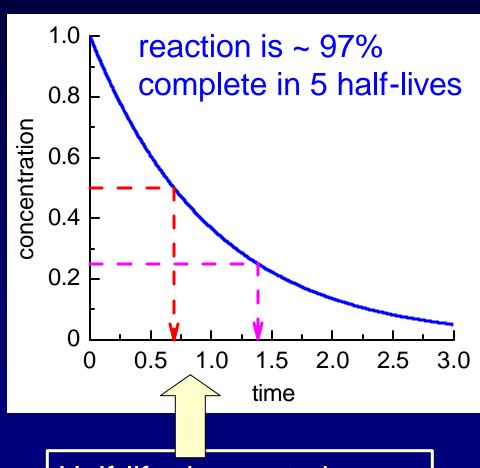
Time resolution limited to about 1 ms by interval between mixing and observation

Pulse radiolysis

Compilations of rate constants (solution)

- University of Notre Dame Radiation Chemistry Data Center
 - web databases from compilations published in the Journal of Physical and Chemical Reference Data

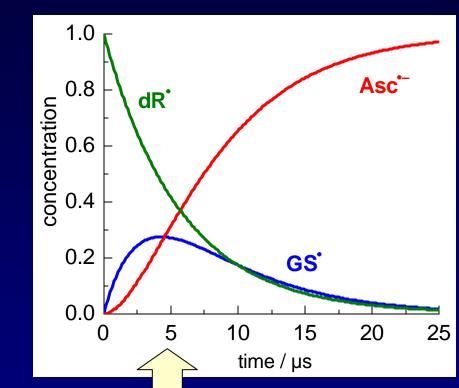
 - http://kinetics.nist.gov/solution/index.php
- Becoming dated and not very user-friendly


Many radical reactions are exponential

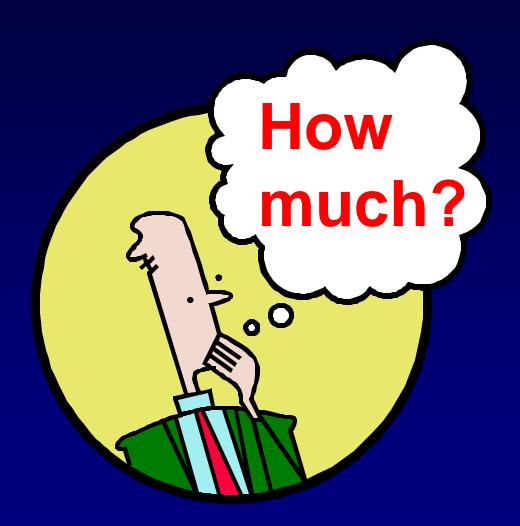
A ? product(s)

$$t_{1/2}$$
 = half-life
= (ln 2) / k
? 0.7 / k

 $\angle A + B$? product(s)


Radical concentration much less than that of target?

Half-life does not change with concentration of A


Examples of radical lifetimes

- "OH + deoxyribose? dR' k? 2.5 ? 10⁹ M⁻¹ s⁻¹ If [deoxyribose] = 0.1 M $t_{1/2}$? 3 ns (? 0.7/(k [dR]))
- dR' + GSH? dRH + GS' k? 3.5 ? 10⁷ M⁻¹ s⁻¹ If [GSH] = 5 mM $t_{1/2}$? 4 µs
- **GS' + AscH**⁻? **GSH + Asc**⁻··· k? 6⋅0 ? 10⁸ M⁻¹ s⁻¹
 If [AscH⁻] = 0.5 mM $t_{1/2}$? 2 µs

Intermediates in reaction cascade may have very low concentrations

Competing and reversible reactions, ratelimiting steps, steady-state concentrations

Competition kinetics: relative rate constants

Two competing reactions:

$$R^{\bullet} + A$$
? measurable product, $P = k$

$$R^{\bullet} + B$$
? another product k_2

Measure yield of P at any time:

[P] = [P]₀
$$\frac{k_1 [R^{\bullet}] [A]}{k_1 [R^{\bullet}] [A] + k_2 [R^{\bullet}] [B]}$$
 [P]₀ = yield in absence of B

$$\frac{[P]_0}{[P]} = 1 + \frac{k_2 [B]}{k_1 [A]}$$
 Plot $[P]_0 / [P]$ vs. $[B] / [A]$ slope = rate constant ratio k_2 / k_1

Rate-limiting steps

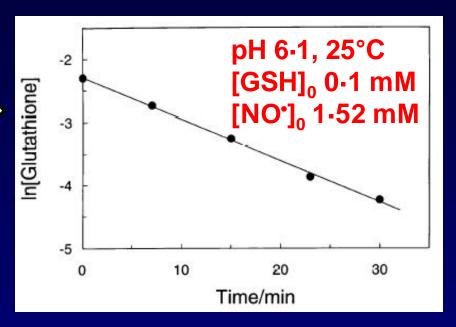
- Many reactions involve multiple steps
 - overall reaction rate may reflect the slowest or ratedetermining step
- Example: reaction of NO* with GSH


 - reaction may involve:

```
GS<sup>-</sup> + NO^{\bullet} (+H<sup>+</sup>) ? GSN^{\bullet}OH 2 GSN^{\bullet}OH ? GSN(OH)-N(OH)SG ? GSSG + H<sub>2</sub>N<sub>2</sub>O<sub>2</sub> H<sub>2</sub>N<sub>2</sub>O<sub>2</sub> (hyponitrite) ? N<sub>2</sub>O + H<sub>2</sub>O
```

may obtain apparently different kinetics depending on whether loss of NO*, loss of GSH, or formation of N₂O is measured, and on the concentrations of reactants

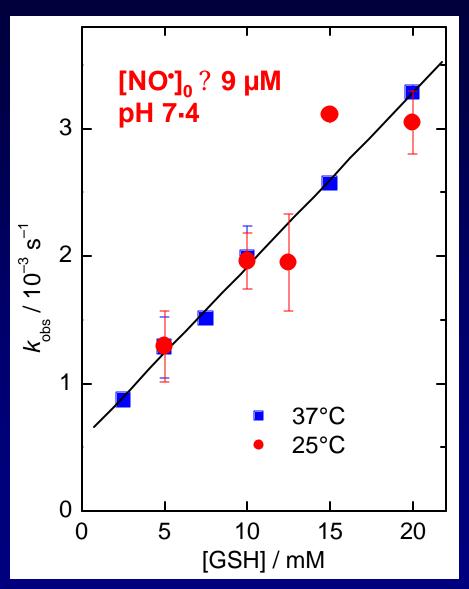
Reaction of NO' with GSH: N₂O formation


- ✓ Hogg et al.* measured
 N₂O, with [GSH] >> [NO¹]:
 but rate not proportional to
 [GSH] at high [GSH]
- Possible explanation: hyponitrite decomposition becoming rate-limiting
- ✓ Hughes and Stedman[†]
 measured pH- and
 temperature-dependence
 for: H₂N₂O₂ ? N₂O + H₂O
 k? 2−3 ? 10⁻³ s⁻¹ at pH
 7-4, 37°C

^{*} FEBS Lett., **382**, 223 (1996) † *J. Chem. Soc.* 129 (1963)

Reaction of NO' with GSH: GSH loss

- Aravindakumar et al.*
 measured loss of GSH with
 [NO•] >> [GSH]
- Rate constant for GS⁻ +
 NO• = 490 M⁻¹ s⁻¹ at 25°C
 (effective rate constant ~ 14
 M⁻¹ s⁻¹ at pH 7-4 since
 [GS⁻] ? 3% of [GSH]_{total})
- $t_{\frac{1}{2}}(NO^{\bullet}) \sim 10 \text{ s with 5 mM}$ GSH at pH 7.4, 25°C



Reactivity ~ 100-fold faster than suggested from study of Hogg *et al.* (1996)

* J. Chem. Soc., Perkin Trans. 2, 663 (2002)

Reaction of NO' with GSH: NO' loss

- Lisa Folkes (Gray
 Cancer Institute,
 unpublished) measured
 NO* loss by chemiluminescence
- ∠ [GSH] >> [NO¹]
- Results support Hogg et al.'s estimate of reactivity

Steady-state concentrations

- At a steady-state, rate of formation = rate of loss
- Superoxide radicals, no superoxide dismutase:

?
$$O_2^{\bullet-}$$
 rate = 0.6 µM s⁻¹
2 $O_2^{\bullet-}$ + 2 H⁺? H_2O_2 + O_2 rate = 2 k [$O_2^{\bullet-}$]²
At steady-state: 6 ? 10^{-7} = 2.4 ? 10^5 [$O_2^{\bullet-}$]²
[$O_2^{\bullet-}$] ? **1.6** µM (n.b. here '[$O_2^{\bullet-}$]' = [$O_2^{\bullet-}$] + [HO_2^{\bullet}])

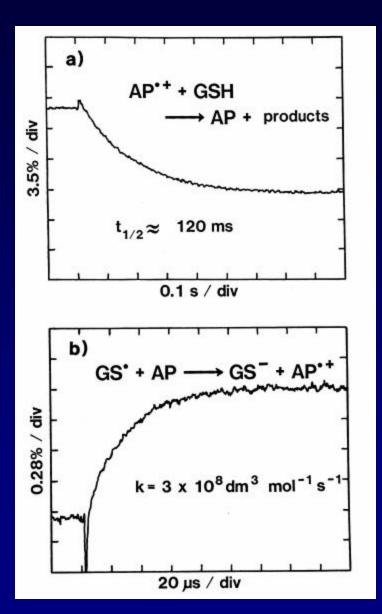
With 3 μM superoxide dismutase (SOD):

?
$$O_2^{\bullet-}$$
 rate = 0.6 µM s⁻¹
 $O_2^{\bullet-}$ + SOD ? $\frac{1}{2}(H_2O_2 + O_2)$ rate = $k[O_2^{\bullet-}][SOD]$
At steady-state: 6 ? 10^{-7} = 2.3 ? $10^9[O_2^{\bullet-}]$? 3 ? 10^{-6}
 $[O_2^{\bullet-}]$? **90 pM**
See: Cadenas & Davies
Free Radical Biol. Med., 2000, **29**, 222

Reversible reactions: driving uphill

- An unfavourable reaction can be driven by removal of a product from the equilibrium
- Le Chatelier's principle (1884, rephrased 1888): 'Every change of one of the factors of an equilibrium occasions a rearrangement of the system ... in a sense opposite to the original change.'

Example:
$$A + B \int_{k_r}^{k_f} C + D$$


- If forward rate < reverse rate, equilibrium is to left, i.e. if k_f [A] [B] < k_r [C] [D]
- but if C or D is removed by another reaction, equilibrium can be driven to the right

Product removal can drive an unfavourable equilibrium

- ✓ Glutathione often 'repairs' drug radicals more efficiently than redox properties predict: drug*+ + GSH □ drug + GS* (+ H+) K << 1
 </p>
- Drug radical often much weaker oxidant then GS*

GS' + GS-
$$\begin{bmatrix} & (GSSG)^{\bullet} - & (GSSG)$$

Unfavourable radical 'repair' by GSH

The radical-cation of aminopyrine (structure below) reacts rapidly with GSH:

 $K < 10^{-4}$ yet reaction proceeds in < 1 s because GS• is removed from the equilibrium

Wilson *et al., Biochem. Pharmacol.,* **35**,
21 (1986)

Lifetimes and diffusion distances

Translating lifetimes to diffusion distances

Einstein-Smoluchowski equation:

where = root-mean-square diffusion distance in 3-dimensional space

D = diffusion coefficient

t = time

Stokes-Einstein relation:

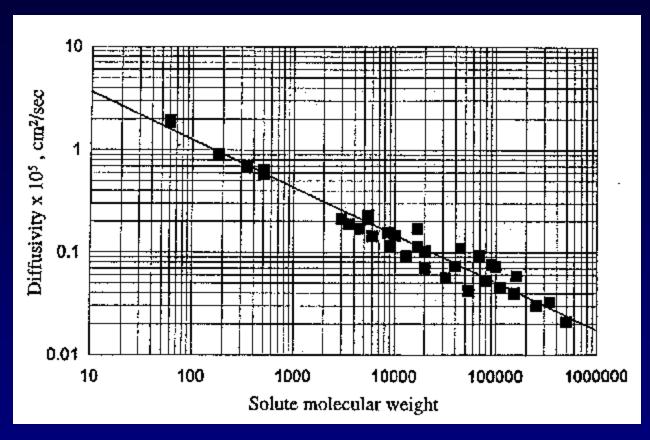
$$D = kT / 6 ?? a$$

where k = Boltzmann constant

T = absolute temperature

? = viscosity

a = radius of solute species

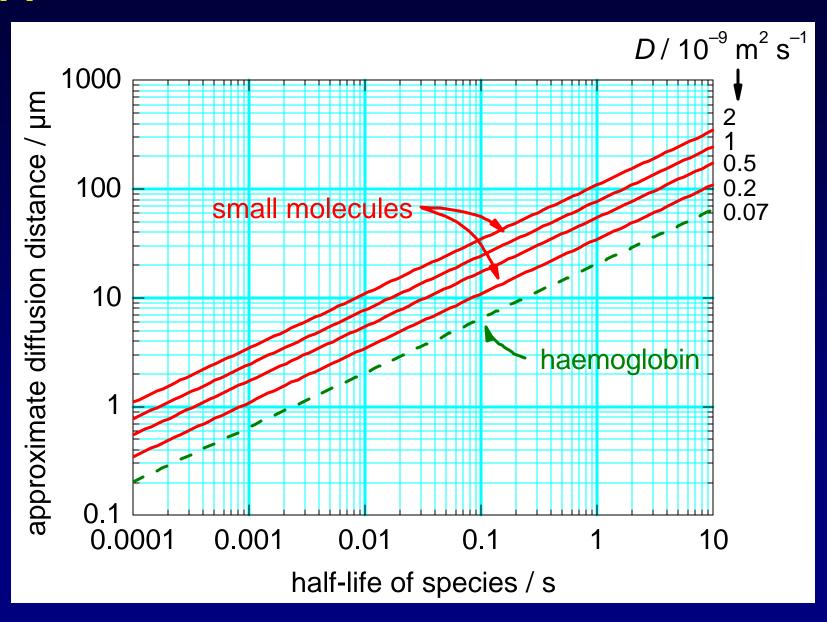

Diffusion coefficients for small molecules

✓ In water at 25°C (about 25% higher at 37°C)

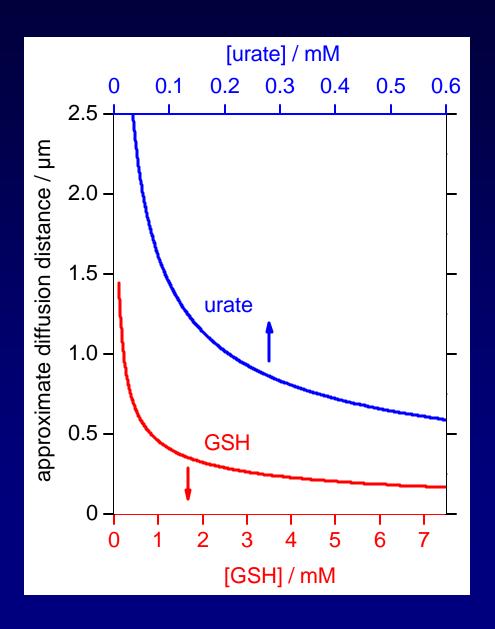
Solute	$D / 10^{-9} m^2 s^{-1}$	MW
NO·	3.3	~ 30
O_2	2-4	32
CO_2	1.9	44
$NO_2^{-\bullet}$	1-4	46
ethanol	1-2	46
glycine	1.1	75
glucose	0.7	180
sucrose	0-5	342

- ✓ Viscosity of blood plasma ~ 1-6? that of water
- ✓ Viscosity of cytosol may be ~ 1.2 4? water

Diffusion coefficients for large molecules



Haemoglobin (\sim 68 kDa): $D \sim 7 ? 10^{-11}$ m² s⁻¹


D? 1.0 ? 10⁻⁸ $M^{-0.46}$ m² s⁻¹ (water, 37°C) where M is the molecular weight

Fournier, R. L., 1999, *Basic Transport Phenomena in Biomedical Engineering* (Taylor & Francis, Philadelphia)

Approximate diffusion distances

Diffusion of a highly-reactive radical: NO₂*

 $\sim D \sim 1 ? 10^{-9} \text{ m}^2 \text{ s}^{-1}$

 κ κ ~ 2 ? 10⁷ M⁻¹ s⁻¹ for both GSH and urate at pH ~ 7⋅4

If [GSH] ~ 5 mM,α 0.2 μm

 \angle All reactants define $t_{1/2}$

 $\approx t_{\frac{1}{2}} \sim 0.7 /$? (k[scavenger])

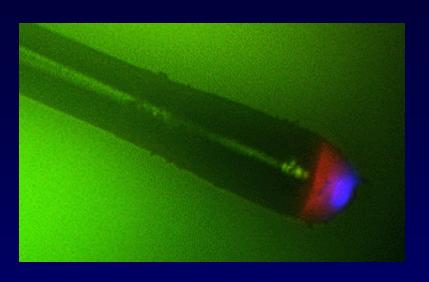
Mapping oxygen, and protein/protein interactions

Lifetimes of excited states as probes

- \angle Two competing reactions (P* = probe excited state):

lifetime of $P^* = ?_? = 1/k_0$

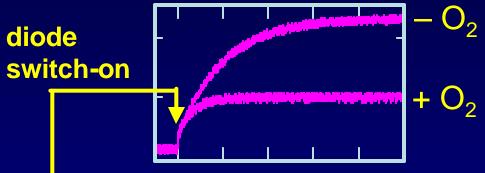
- Can measure emission intensity I from P*:


/?
$$\frac{k_0 [P^*]}{k_0 [P^*] + k_q [P^*] [Q]}$$

$$I_0 / I = ?_0 / ? = 1 + k_q ?_0 [Q]$$

(Stern-Volmer plot – *cf.* competition kinetics)

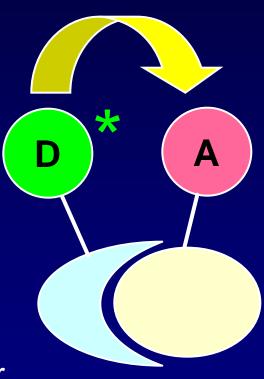
- Lifetime imaging can yield more information
 - may be independent of [P], optical artefacts
 - useful with multi-photon excitation/confocal imaging


Mapping oxygen gradients

- Optical fibre (200 μm) with Ru(Ph₂phen)₃ in silicone rubber coated tip
- Blue light-emitting diode:
 excitation ~ 450 nm
 emission ~ 620 nm

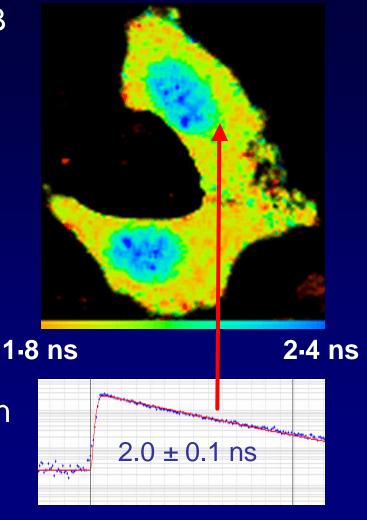
(Borivoj Vojnovic, William K Young & Peter Wardman, Gray Cancer Institute)

Oxygen-sensitive lifetime of luminescence from ruthenium complex measured



www.oxfordoptronix.com

Energy transfer between excited states


- Tag two (or more) proteins
 - excite donor fluorophor (D)
 - monitor acceptor (A) emission or preferably lifetime of donor
 - energy transfer only occurs when proteins interact, reduces lifetime
- Fluorescence (Förster) Resonance Energy Transfer occurs:
 - if excitation spectrum of acceptor overlaps emission spectrum of donor
 - if D/A in close proximity: signal falls off as 1/(distance)⁶ − 1 to 10 nm range

Lifetime imaging: protein interactions

- Tumour cells transfected with NF?B with donor fluorophor tag and antibody-recognisable IKK?
- Cells treated with H₂O₂ and antibodies for IKK? with acceptor fluorophor
- Intensity image shows NF?B distibuted throughout nucleus
- Lifetime image (top right) shows oxidative stress activates interaction of NF?B kinase with signalling kinase IKK?, but only in cytoplasm

(Sarah Roberts, Simon Ameer-Beg & Borivoj Vojnovic, Gray Cancer Institute)

donor fluorescence lifetime

Conclusions

THINK about and Use Thermodynamics and Kinetics For Understanding and Success

Perhaps the single most useful kinetic relationship, for reactions (most) where target concentrations significantly exceed radical concentrations, is:

radical half-life

0.7

sum of (rate constant? target concentration)