PhGPx, a beginning story

Hong P. Wang, Ph.D.

699 Concession St.

Hamilton Regional Cancer Centre

McMaster University

Hamilton, Ontario, L8V 5C2, Canada

Email: hong.wang@hrcc.on.ca

PhGPx is an antioxidant enzyme

- **PhGPx, a selenium dependent enzyme, detoxifies hydroperoxides by reducing them to alcohols.
- **#**Example hydroperoxides are:
 - phospholipid hydroperoxides
 - fatty acid hydroperoxides
 - cholesterol hydroperoxides

PhGPx is a member of the glutathione peroxidase (GPx) family

₩GPx 1: cGPx

₩GPx 2: GI GPx

#GPx 4: phospholipid hydroperoxide GPx

(PhGPx)

#GPx 5: secretory GPx

Biochemical mechanism of PhGPx in reducing lipid hydroperoxide

Ping-Pong mechanism

- the selenol moiety of PhGPx is first oxidized by hydroperoxides; and
- (2) then, it reduced back by two GSHs.

LOOH: lipid hydroperoxide

LOH: alcohol derivative

GSH: glutathione

GSSG: glutathione disulfide

PhGPx reacts fast with hydroperoxides

Rate Constants:

	$k (M^{-1} s^{-1})$	
Substrates	PhGPx	cGPx
# hydrogen peroxide	3.2×10^{7}	4.8×10 ⁸
# linoleic acid hydroperoxide	3.0×10^{8}	3.8×10^{8}
# phosphatidylcholine	1.7×10 ⁸	-
hydroperoxide (used in activity	assay)	

(Maiorino M. et al. 1990 Method Enzymol. 186: 448-457)

PhGPx: Some Facts

PhGPx is:

#the second selenoenzyme discovered in 1982; #monomeric enzyme containing one selenium atom at the active site as selenocysteine; #expressed in most tissues: testis, kidney, heart, skeletal muscle, liver, brain, lung, spleen; #present in cytoplasm, mitochondria, as well as plasma and nuclear membranes.

(Ursini F, *et al.* 1985 *Biochim. Biophys. Acta* **839**:62-70; and Godeas C, *et al.* 1994 *Biochim. Biophys. Acta* **1191**:147-150)

The PhGPx Gene

- #PhGPx gene is localized on human chromosome 19p13.3;
- **#It** consists of 7 exons, and spans 2.8 kb.
- #It has two windows of transcription start sites, which results in two populations of mRNA.

Gene Structure

Kelner et al. BBRC, 249: 53, 1998

Two Transcription Start Sites

Pushpa-Rekha et al. JBC, 270:26993, 1995

Two forms of PhGPx

The two populations of mRNA give rise two different sizes of PhGPx protein:

#Mitochondrial PhGPx (L-PhGPx): 23 kDa,

****Non-mitochondrial PhGPx (S-PhGPx): 20 kDa.**

(Pushpa-Rekha TR, et al. 1995 J. Biol. Chem. 270:26993-26999)

L-PhGPx

- # L-PhGPx is a 197-amino acid protein containing a 27-amino acid mitochondrial leader sequence;
- L-PhGPx is localized to the intermembrane space of mitochondria;
- L-PhGPx is expressed abundantly in testis tissue.

S-PhGPx

- S-PhGPx is the same protein as L-PhGPx minus the 27-amino acid leader sequence; thus, it is a 170-amino acid protein.
- **S-PhGPx** is expressed in most somatic tissues.
- # It is localized in cytosol and is bound to plasma membrane.

PhGPx can be structural protein in specific situations.

PhGPx is involved in spermatid differentiation where it functions as a structural protein.

PhGPx exists as a soluble peroxidase in spermatids, but persists in mature spermatozoa as an enzymatically inactive, oxidatively cross-linked, insoluble protein. It represents at least 50% of the capsule material that is associated with the helix of the mitochondria.

(Ursini F. et al. 1999 Science 285: 1393-1396)

PhGPx inhibits membrane-damaging lipid peroxidation

(Thomas JP et al. 1990 J. Biol. Chem. 265: 454-461)

- A. The system consisted of isolated membranes that were photoperoxidized with rose bengal, a singlet oxygen-generating dye. GPx alone caused little if any lipid hydroperoxide (LOOH) loss. When added after GPx, PhGPx caused an immediate and rapid decrease of LOOH
- B. The peroxidized membranes were treated with CaCl₂/PLA₂ before being analyzed. GPx produced a sizable decrease of LOOH. Subsequent addition of PhGPx resulted in another decrease, the magnitude of which was about 2/3 of that produced by GPx.

L-PhGPx protects against mitochondrial damage

Flow cytometry analysis of changes in mitochondrial membrane potential and in the integrity of plasma membranes. Parental RBL-2H3 cells (A-C), S-PhGPx transfected cells (D-F), L-PhGPx transfected cells (G-I). Cells were double stained with Rh123 and PI after the incubation with 25 mM KCN for 0 h (A, D, G), 2 h (B, E, H), and 4 h (C, F, I).

Overexpression of L-PhGPx maintains the mitochondrial functions by reduction of hydroperoxides generated as a result of damage to the mitochondrial respiratory machinery. By contrast, overexpression of S-PhGPx is less efficient in protecting against the loss of mitochondrial membrane potential. (Arai M et al. 1999 J. Biol. Chem. 274: 4924-4933)

L-PhGPx prevents apoptosis by blocking the release of cytochrome *c* from mitochondria

- A. The nature of cell death caused by 2-deoxyglucose (2-DG) examined by fluorescence microscopy. Condensation of nuclei was observed in S1 (parental cells), L9 (S-PhGPx transfectant), no condensation of nuclei was observed in M15 (L-PhGPx transfectant).
- B. Cytochrome *c*, released from mitochondria, was detected in S1 and L9 cells 4 h after the start of exposure to 2-DG. No detectable cytochrome *c* was found in the cytosol of M15 cells.

(Nomura K et al. 1999 J. Biol. Chem. 274: 29294-29302)

PhGPx inhibits photo-oxidative stress induced lipid-derived radical generation

MCF-7 cells were transfected with PhGPx. Different protein (A) and activity levels (B) of PhGPx are present in parental (wt), vector control (neo) and transfectants (P-1 to P-4). The lipid-derived radical adducts (C) of DMPO were observed using electron paramagnetic resonance spin trapping. Cells with low PhGPx activity produced higher levels of radicals.

Summary

- PhGPx is an important enzyme in regulating cellular peroxide levels.
- PhGPx can lower the peroxide tone, which might change the cellular redox environment and affect cell growth.
- L-PhGPx plays a central role in preventing mitochondrial damage.
- PhGPx may play a role in the resistance to oxidative stress-mediated anticancer therapy.
- # PhGPx can also be a structural protein.