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Apoptosis - (Gr. "falling") a process seen 
in multicellular organisms, by which specific 
cells are killed and removed for the benefit 
of the organism.
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cells are killed and removed for the benefit 
of the organism.
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animation.
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Major Apoptotic Pathways in Mammalian Cells
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Hengartner, M.O. 2000. Nature. 407:770.
Green, D. and Kroemer, G. 1998. Trends Cell Biol. 8:267.



Apoptosis Society for Free Radical Biology and Medicine       Tome & Briehl 4

Apoptotic Pathways Effectors and Modulators

• There are two major apoptotic pathways in mammalian cells.
– The death receptor pathway, exemplified by FasL binding to an extracellular 

receptor, causes the formation of the DISC that results in the activation of 
caspase-8.

– The mitochondrial pathway is activated by most cellular stresses.  A resulting 
signal or intracellular change causes the release of cytochrome c into the 
cytosol.  Cytochrome c binds to Apaf-1 and procaspase-9 to form the 
apoptosome and catalyzes the activation of caspase-9.

• Initiator caspases, such as 8 and 9, activate effector caspases that cleave multiple 
cellular proteins.  Caspases are characterized by an active site cysteine.  Further 
discussion on caspases can be found in Earnshaw, W.C. et al. 1999. Annu. Rev. 
Biochem. 68:383.

• Bcl-2 is a proto-oncogene that was first discovered in B-cell lymphoma.  Bcl-2 
prevents apoptosis by blocking the release of cytochrome c from the mitochondrion 
by an unknown mechanism.  Several models are discussed in Hengartner, M.O. 
2000. Nature 407:770.  There are many Bcl-2 homologs, some with pro- and others 
with anti-apoptotic functions.  The ratio between these two types helps determine 
the fate of the cell.  Additional information about Bcl-2 family members can be found 
in Gross, A. et al. 1999. Genes & Dev. 13:1899.
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Apoptosis and Phagocytosis
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• Phagocytes recognize “eat-me” 
or cell corpse signals on the  
apoptotic cell surface.  These 
signal the phagocyte to activate 
cellular engulfment machinery.

• Phosphatidylserine exposure on 
the target cell surface and the 
phosphatidylserine receptor on 
the phagocyte are essential for 
phagocytosis.

• Defining other receptors, bridge 
molecules, “eat-me” signals and 
signaling molecules involved in 
initiating the cytosolic changes 
needed for engulfment are very 
active areas of research.  The 
articles listed below review 
current knowledge and are the 
sources for this diagram.

Savill, J. and Fadok, V. 2000. Nature. 407:784.
Canradt, B. 2002. Nature Cell Biol. 4:E139.



Apoptosis Society for Free Radical Biology and Medicine       Tome & Briehl 6

Apoptosis and Phagocytosis
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• The first pathway shows 
the engulfment of an 
apoptotic cell exposing 
“eat-me” signals.

• Data from mammalian 
systems and genetic 
studies from 
Caenorhabditis elegans
have shown that 
phagocytes and target 
cells have several types 
of interactions.

• Conradt has proposed 
several models (2-4) to 
indicate the more 
complex phagocyte-
target interactions.

Conradt, B. 2002. Nature Cell Biol. 4:E139.
Greene, D.R. and Beere, H.M. 2001. Nature. 412:133.
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Apoptosis and Cellular Redox Environment

• Oxidants such as hydrogen peroxide can trigger apoptosis.

• Intracellular ROS generation by chemotherapeutics and ionizing 
radiation may be critical to induction of apoptosis by these agents.

• Depletion of glutathione pools occurs during apoptosis and GSH 
depletion can increase apoptosis, in some systems.

• Antioxidant enzymes and chemical antioxidants can protect 
against apoptosis.

• Oxidative damage to lipids and DNA is seen during apoptosis in 
some systems.

• ROS production can also attenuate apoptosis.

Chandra, J. et al. 2000.  Free Rad. Biol. Med. 29:323.
Buttke, T.M. and Sandstrom, P.A. 1995. Free Rad. Res. 22:389.
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Apoptosis Signaling and Cellular Redox Environment

Themes emerging from research on signaling pathways include:

• The activity of multiple apoptosis regulators is modulated by the cellular 
redox environment. Examples include p53, NF-kappaB and the JNK/SAPK 
and apoptosis signal-regulating (ASK1) kinases.

• Downstream targets of these regulators function in the control of the 
cellular redox environment. Examples include differential regulation of 
oxidative stress-related genes during p53-induced apoptosis, regulation of 
the mitochondrial antioxidant protein (MnSOD) by NF-κB and 
phosphorylation of Bcl-2 downstream of the ASK1signaling pathway.

• Whether or not the cellular redox environment is maintained in balance, 
following an apoptotic signal, influences the decision of cell fate: life vs. 
death.

Sun, Y. and Oberley, L.W. 1996. Free Rad. Biol. Med. 21:335.
Trinei, M. et al. 2002. Oncogene 21:3872.
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Bcl-2 and Cellular Redox Environment

• Bcl-2 affects the redox environment of the cell.
– Many Bcl-2 expressing cells have increased GSH.
– bcl-2 knockout mice show increased oxidative stress.
– Some Bcl-2-overexpressing cells exhibit increased baseline 

intracellular ROS (i.e., Bcl-2 acts as a pro-oxidant).

• The impact of Bcl-2 on the redox environment of the cell could affect 
redox-sensitive transcription factors and ROS-based signaling pathways 
involved in apoptosis.

Hengartner, M.O. 2000. Nature. 407:770.
Voehringer, D.W. and Meyn, R.E. 2000. Antioxidants & Redox Signalling. 2:537.
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Cytochrome c and Cellular Redox Environment

• Cytochrome c in solution can act as an antioxidant and an ROS 
scavenging function for cytochrome c in the intermembrane space has 
been proposed by Skulachev.

• Release of cytochrome c into the cytosol from the mitochondrion 
interrupts the electron transport chain resulting in increased production 
of superoxide from the mitochondrion.

• Binding of cytochrome c to form the apoptosome and activate caspase-9 
does not appear to depend on the ability of cytochrome c to transfer or 
accept electrons.  

• However, the reduction state of cytochrome c may still be important 
because reduction and oxidation cause conformational changes that 
may be critical for cytochrome c binding to Apaf-1 and procaspase-9.

Cai, J. and Jones, D.P. 1998. J. Biol. Chem. 273:11401.
Hancock, J.T. et al. 2001. Free Rad. Biol. Med. 31:697.
Skulachev, V.P. 1998. FEBS Lett. 423:275.
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Caspases and Cellular Redox Environment

• The cysteine in the caspase active site is sensitive to oxidation 
or to thiol alkylation.

• Intracellular superoxide or hydrogen peroxide concentrations 
have been implicated in regulating caspase activity and 
modulating apoptosis.

• The cysteine sulfhydryl can also be S-nitrosylated, inactivating 
the caspase and providing a mechanism to reversibly modulate 
caspase activity.

• In some systems, caspases play a role in the life and death 
decision; therefore, their inactivation may promote functional cell 
survival.

Chandra, J. et al. 2000.  Free Rad. Biol. Med. 29:323.
Pervaiz, S. and Clement, M.-V. 2002. Biochem. Biophys. Res. Comm. 290:1145.
Green, D.R. and Kroemer, G. 1998. Trends Cell Biol. 8:267. 
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Oxidative Stress and Phagocytosis in Apoptosis

• ROS released by macrophages can induce apoptosis in target cells
suggesting a role for phagocytes in cell population control.

• Phosphatidylserine is selectively oxidized in some cells in response 
to oxidants. 

• Work by Kagan and colleagues has suggested that externalization 
of oxidized phosphatidylserine during apoptosis may increase 
phagocytosis of these cells.

Duffield, J.S. et al. 2000. J. Immunol. 164:2110.
Fabisiak, J.P. et al. 1997. Am. J. Physiol. 272:C675.
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Apoptosis and Cancer

Hanahan and Weinberg 
have proposed that normal 
cells must acquire six 
phenotypes to become 
malignant.  One of these 
traits is resistance to 
apoptosis.  In this model, 
the chronological order and 
mechanism by which these 
phenotypes are acquired 
may differ in each tumor.  
Genomic instability 
provides the driving force 
for acquiring new 
phenotypes.  Thus, 
mutations in genomic 
“caretaker” systems such 
as p53 may increase the 
rate at which other 
alterations occur.
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Hanahan, D. and Weinberg, R.A. 2000. Cell. 100:57.
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Oxidative Stress and Cancer

Disorders Sharing Oxidative 
Stress and Cancer Proneness

In each of these congenital disorders 
the cells show evidence of increased 
oxidative stress. Affected individuals 
show an increased incidence of 
cancer.  Chromosomal instability is 
also a common feature of the first 
four disorders.  Taken together these 
data suggest that the increased 
oxidative stress may contribute to 
development of genomic instability (a 
mutator phenotype) that is a hallmark 
of cancer cells. 

Fanconi anaemia

Xeroderma pigmentosum

Ataxia telangiectasia

Bloom syndrome

Down syndrome

Cystic fibrosis

Pagano, G. et al. 1998. Medical Hypotheses. 51. 253.
Loeb, L. 2001. Cancer Res. 61:3230.
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Oxidative Stress and Cancer
Chronic Inflammation is Associated with Malignancy

Asbestos fiber exposureMesothelioma

Human papilloma virusCervical

Sarcoidosis, hepatitis B virusLiver

Heliobacter pylori infectionGastric

Barret’s esophagus Esophago-gastric 
junction carcinoma

PancreatitisPancreatic

Eosinophilic cystitis, schistosomiasisBladder

Ovarian epithelial inflammationOvarian

Asthma, chronic bronchitis, emphysemaLung

Ulcerative colitisColon

HIV, Epstein-Barr and Herpes 8 virus, chronic host vs. graft diseaseLymphoma

Inflammatory ConditionCancer
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Oxidative Stress and Cancer
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The continuous production of 
oxidants at the site of chronic 
inflammation may cause 
cancer.

Fitzpatrick, F.A., 2001. Int.  Immunopharmacol. 1:1651.
O'Byrne, K.J., and Dalgleish, A.G., 2001. Br. J. Cancer, 85:473.
Kuper, H., et al. 2000. J. Int. Med., 248:171.
Shacter, E., and  Weitzman, S.A., 2002. Oncology 16:217.
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Oxidative Stress and Cancer Therapy

Anti-Cancer Agents

Doxorubicin
Daunorubicin
Mitomycin C
Etoposide
Cisplatin
Arsenic trioxide
Ionizing radiation
Photodynamic therapy

These anti-cancer agents 
depend exclusively or in part 
on the production of reactive 
oxygen species for cytotoxicity.  
Sensitivity of tumor cells to 
oxidative stress and/or 
apoptosis may affect treatment 
success.

Davis, W. 2001. Pharmacol.  Exp. Ther. 296:1.
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Oxidative Stress, Apoptosis and Cancer
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overexpressing catalase (CAT38) 
or thioredoxin (THX) are resistant 
to glucocorticoid-induced apoptosis 
in vitro.  This suggests that 
glucocorticoids induce apoptosis 
by an ROS-dependent mechanism.

Percentage of annexin positive, propidium 
iodide negative cells in the culture after a 
24h  treatment with glucocorticoid.

Tome, M.E. et al. 2001. Cancer Res. 61:2766.
Tome, M.E. and Briehl, M.M. 2001. Cell Death Differ. 8:953.
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Oxidative Stress, Apoptosis and Cancer

Average tumor weight is 
increased in SCID mouse 
tumor xenografts from 
cells overexpressing 
catalase or thioredoxin.  
Tumors from  both 
transfectants contain fewer 
apoptotic cells, but mitotic 
cell numbers are similar.  
This suggests that 
antioxidant overexpression 
results in increased tumor 
size due to a decrease in 
apoptosis.

7.9 ± 0.81.29 ± 0.23THX

9.7 ± 0.91.43 ± 0.19CAT38

23.7 ± 4.00.68 ± 0.08Neo3

Relative 
Apoptosis*

Tumor Weight 
(g)

Cell 
Variant

Values  are means ± SEM.
*Indicates the number of apoptotic cells in a 100 X 
microscope field.
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Oxidative Stress, Apoptosis and Cancer: Some Models
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