Virtual Free Radical School Protein Oxidation: A primer on characterization, detection, and consequences

Emily Shacter, Ph.D. Chief, Laboratory of Biochemistry Division of Therapeutic Proteins Center for Drug Evaluation and Research Food and Drug Administration Bethesda, MD 20892 Ph: 301-827-1833 Fax: 301-480-3256 Email: emily.shacter@fda.hhs.gov

Society For Free Radical Biology and Medicine

What is protein oxidation?

Covalent modification of a protein induced by reactive oxygen intermediates or by-products of oxidative stress.

Agents that lead to protein oxidation

- Chemical Reagents
 - (H₂O₂, Fe²⁺, Cu¹⁺, glutathione, HOCl, HOBr, ¹O₂, ONOO⁻)
- Activated phagocytes (oxidative burst activity)
- γ -irradiation in the presence of O_2
- UV light, ozone
- Lipid peroxides (HNE, MDA, acrolein)
- Mitochondria (electron transport chain leakage)
- Oxidoreductase enzymes
 - (xanthine oxidase, myeloperoxidase, P-450 enzymes)
- Drugs and their metabolites

General types of protein oxidative modification

- Sulfur oxidation (Cys disulfides, S-thiolation; Met sulfoxide)
- Protein carbonyls (side chain aldehydes, ketones)
- Tyrosine crosslinks, chlorination, nitrosation, hydroxylation
- Tryptophanyl modifications
- Hydro(pero)xy derivatives of aliphatic amino acids
- Chloramines, deamination
- Amino acid interconversions (*e.g.*, His to Asn; Pro to OH-Pro)
- Lipid peroxidation adducts (MDA, HNE, acrolein)
- Amino acid oxidation adducts (*e.g.*, *p*-hydroxyphenylacetaldehyde)
- Glycoxidation adducts (*e.g.*, carboxymethyllysine)
- Cross-links, aggregation, peptide bond cleavage

Protein Oxidation

Society For Free Radical Biology and Medicine

Amino acids most susceptible to oxidation and their main reaction products

Amino Acid	Physiological oxidation products	
Cysteine	Disulfides, mixed disulfides (e.g., glutathiolation), HNE-Cys	
Methionine	Methionine sulfoxide	
Tyrosine	Dityrosine, nitrotyrosine, chlorotyrosines, dopa	
Tryptophan	Hydroxy- and nitro-tryptophans, kynurenines	
Phenylalanine	Hydroxyphenylalanines	
Valine, Leucine	Hydro(pero)xides	
Histidine	2-Oxohistidine, asparagine, aspartate, HNE-His	
Glutamyl	Oxalic acid, pyruvic acid	
Proline	Hydroxyproline, pyrrolidone, glutamic semialdehyde	
Threonine	2-Amino-3-ketobutyric acid	
Arginine	Glutamic semialdehyde, chloramines	
Lysine	a-Aminoadipic semialdehyde, chloramines, MDA-Lys, HNE-Lys, acrolein-Lys, carboxymethyllysine, pHA-Lys	

Reaction scheme showing how metal-catalyzed protein oxidation is a site-specific process

Protein Oxidation

Society For Free Radical Biology and Medicine

Biochemical consequences of protein oxidative modification

- Loss or gain of enzyme activity
- Loss of protein function (*e.g.*, fibrinogen/fibrin clotting)
- Loss of protease inhibitor activity (*e.g.*, α -1-antitrypsin, α 2-macroglobulin)
- Protein aggregation (*e.g.*, IgG, LDL, a-synuclein, amyloid protein, prion protein)
- Enhanced susceptibility to proteolysis (*e.g.*, IRP-2, HIF-1 α, glutamine synthetase)
- Diminished susceptibility to proteolysis
- Abnormal cellular uptake (*e.g.*, LDL)
- Modified gene transcription (*e.g.*, SoxR, IkB)
- Increased immunogenicity (*e.g.*, ovalbumin; HNE- or acrolein-LDL)

Protein Oxidation

Diseases and conditions in which protein oxidation has been implicated and specific target proteins, if known

- Atherosclerosis (LDL)
- Rheumatoid arthritis (IgG, α-1-proteinase inhibitor)
- Ischemia reperfusion injury
- Emphysema (α -1-proteinase inhibitor, elastase)
- Neurodegenerative diseases
 - » Alzheimer's (β -actin, creatine kinase)
 - » Parkinson's
 - » Sporadic amyotrophic lateral sclerosis
- Muscular dystrophy
- Neonates on ventilators; bronchopulmonary dysplasia
- Adult respiratory distress syndrome
- Aging (glutamine synthetase, carbonic anhydrase III, aconitase)
- Progeria
- Acute pancreatitis
- Cataractogenesis (alpha-crystallins)
- Chronic ethanol ingestion
- Cancer

Protein Oxidation

Society For Free Radical Biology and Medicine

How can we inhibit protein oxidation?

Antioxidants

- » scavengers (probucol, spin traps, methionine)
- » antioxidant enzymes (catalase, SOD, peroxiredoxins)
- » antioxidant enzyme mimics (ebselen, Tempol, TBAPS)
- » augmentation of cellular antioxidant systems
 - ► N-acetylcysteine (\rightarrow ↑intracellular GSH)
- Chelators (DTPA, Desferal[®])
 Depletion of O₂

- There is no single universal marker for protein oxidation.
 - * With so many different potential reaction products, may need to do several different assays if source of oxidants unknown
 - * If source of oxidation is known, the range narrows (*e.g.*, metal-catalyzed oxidation does not cause chlorination or nitrosation, and HOCl does not cause lipid peroxidation adducts)

- * Products are relatively stable
- * Types of modification reveal nature of oxidizing species
 - » chlorotyrosine from HOCl
 - » nitrotyrosine from $NO + O_2^{-}$ or HOCl
 - » glutamic and aminoadipic semialdehydes from metal-catalyzed oxidation
- * Have unique physiological consequences due to the specificity of protein functions
- * Sensitive assays are available (detecting <1 pmol of oxidized product)

Protein Oxidation

Society For Free Radical Biology and Medicine

- Different forms of oxidative modification have different functional consequences
 - * Met is highly susceptible but oxidation often does not affect protein function
 - * Carbonyls are often associated with dysfunction but may require more stringent oxidative conditions

- Proteins, lipids, and DNA are modified by different oxidants to different degrees
 - *e.g.*, HOCl generated by myeloperoxidase hits protein >> lipids >> DNA
 - *e.g.*, H_2O_2 treatment of cells hits DNA \geq lipids >> proteins

Protein Oxidation

Society For Free Radical Biology and Medicine

<u>Methods for detection of oxidative protein modifications</u> #			
Modification	Methods of Detection		
Disulfides	SDS-gel electrophoresis ± ß-ME		
	DTNB		
	Reaction with BIAM ^{*&} or MPB [*] \rightarrow SDS-PAGE		
Glutathiolation	RP-HPLC/mass spectrometry		
	S^{35} -Cys/Chx \rightarrow SDS-PAGE		
	Biotinylated glutathione ethyl ester ^{\$}		
Methionine sulfoxide	CnBr cleavage/amino acid analysis		
Carbonyls	DNPH**-coupled assays:		
	Spectroscopy		
	HPLC		
	Western blotting		
	ELISA		
	Immunohistochemistry		
	Reduction with NaB ³ H ₃		

See Table 4 in Shacter, E. (2000) *Drug Metab. Rev.* 32, 307-326. & Kim *et al.* (2000) *Anal. Biochem.* 283, 214-221; ^{\$} Sullivan *et al.* (2000) *Biochemistry* 39, 11121-11128.
* Biotinylated iodoacetamide or maleimido-propionyl biocytin; **, Dinitrophenylhydrazine

Modification	Methods of Detection
2-oxo-His	Amino acid analysis
Dityrosine	Fluorescence Proteolysis or hydrolysis → HPLC
Chlorotyrosine	Hydrolysis/nitroso-naphthol/HPLC HBr hydrolysis → GC/MS
Nitrotyrosine	Immunoassay Hydrolysis \rightarrow HPLC HPLC/electrochemical detection
Tryptophanyl modifications	Fluorescence Amino acid analysis (alkaline hydrolysis) Proteolysis/MS
Hydroperoxides	KI/I ₃ ⁻ /spectroscopy Na BH ₄ /hydrolysis/OPA-HPLC

Methods for detection of oxidative protein modifications, con[#]

[#] See Table 4 in Shacter, E. (2000) *Drug Metab. Rev.* **32**, 307-326.

Protein Oxidation

Methods for detection of oxidative protein modifications, con#

Modification	Methods of Detection
Lipid peroxidation adducts	Immunoassays DNPH Na BH₄/hydrolysis/OPA-HPLC Hydrolysis → GC/MS
Amino acid oxidation adducts	NaCNBH ₃ reduction/hydrolysis /H ¹ -NMR/MS
Glycoxidation adducts	Derivitization \rightarrow GC/MS
Cross-links, aggregates, fragments	SDS-gel electrophoresis HPLC
Thiyl radicals	ESR

See Table 4 in Shacter, E. (2000) *Drug Metab. Rev.* **32**, 307-326.

Protein Oxidation

Society For Free Radical Biology and Medicine

A little more about protein carbonyls

- Carbonyl groups are stable (aids detection and storage)
- Present at low levels in most protein preparations (~1 nmol/mg protein ~ 0.05 mol/mol ~ 1/3000 amino acids)
- See 2- to 8- fold elevations of protein carbonyls under conditions of oxidative stress *in vivo*
- Induced *in vitro* by almost all types of oxidants (site-specific metal catalyzed oxidation, γ-irradiation, HOCl, ozone, ¹O₂, lipid peroxide adducts)
- Sensitive assays are available (≤ 1 pmol)

Amino acids that undergo metal-catalyzed oxidation to form carbonyl products

Proline (γ-glutamylsemialdehyde)
Arginine (γ-glutamylsemialdehyde)
Lysine (amino-adipicsemialdehyde)
Threonine (amino-ketobutyrate)

Detection of protein carbonyls

- Measure total protein carbonyls levels after reaction with DNPH* followed by spectroscopy (A370), ELISA, or immunohistochemistry
- Measure carbonyl levels in individual proteins within a mixture of proteins (tissue samples, cell extracts) by reaction with DNPH followed by Western blot immunoassay

*DNPH, dinitrophenylhydrazine

Protein Oxidation

Measurement of total carbonyls (Spectrophotometric DNPH assay)

e.g. arg ---> γ -glutamylsemialdehyde

Dinitrophenylhydrazone-protein

Society For Free Radical Biology and Medicine

Immunoassays for protein carbonyls

e.g., Western blot, ELISA, immunohistochemistry

Protein Oxidation

Society For Free Radical Biology and Medicine

Western blot assay for protein carbonyls

- Detects individual oxidized proteins within a mixture of proteins
- Requires ~ 50 ng of protein
- Sensitivity of ≤1 pmol of protein carbonyl
 » ~50 ng of a 50 kDa protein oxidized @ 0.5 mol/mol
- Reveals differential susceptibility of individual proteins to oxidative modification*

Shacter *et al.* (1994) *Free Radic. Biol. Med.* **17**, 429-437

Protein Oxidation

Notes

- Carbohydrate groups of glycoproteins do not contribute to carbonyl levels*
- Free aldehyde groups from lipid peroxidation adducts (*e.g.*, MDA) can react with DNPH
 - » Adduct needs to be stable
 - » if reduction with NaBH₄ is required to stabilize the adduct, DNPH reactivity will not be seen
- Western blot assay is only semi-quantitative
 - » use titration to estimate carbonyl content**

*Lee, Y-J. and Shacter, E. (1995) *Arch. Biochem. Biophys.* **321**, 175-181 ** Shacter, E. *et al.* (1994) *Free Radic. Biol. Med.* **17**, 429-437

Protein Oxidation

Reagents and equipment*

- 20 mM DNPH in 20% trifluoroacetic acid (TFA)
- 24% SDS in water
- Neutralizing solution (2M Tris/30% glycerol ± 20% β-ME)
- Sample protein(s)
- Oxidized and native protein samples
- SDS-gel electrophoresis and Western blotting apparatus and conventional solutions
- Anti-DNP antibody (Sigma D-8406, IgE)
- Rat anti-mouse IgE, conjugated for immunoassay detection (biotin, HRP)

* See Shacter (2000) Meth. Enzymol. 319, 428-436 or

Levine, R.L., Williams, J., Stadtman, E.R., and Shacter, E. (1994) Meth. Enzymol. 233, 346-357

Protein Oxidation

Society For Free Radical Biology and Medicine

Technical Pointers

- Can be used on cell and tissue extracts
- Dissolve the DNPH in 100% TFA and then dilute with H_2O
- Total protein bands can be visualized with Amido black stain after washing the blot
- <u>Always</u> run positive and negative controls
 - » internal standards of oxidized and non-oxidized control protein
 - » adjust exposure time if doing chemiluminescence
- Run controls without DNPH or primary antibody » to establish specificity

Other DNPH immunoassays for protein carbonyls

ELISA

Buss et al. (1997) Free Radic. Biol. Chem. 23, 361-366
2D gel electrophoresis/immunoblotting Yan et al. (1998) Anal. Biochem. 263, 67-71
Immunohistochemistry Smith et al. (1998) J. Histochem. Cytochem. 46, 731-735

A little more about protein sulfur group oxidations

- In general, Cys and Met are the amino acids that are most susceptible to oxidation
- Distinguished from other oxidative protein modifications in that cells have mechanisms to reverse the oxidation
 - *e.g.*, methonine sulfoxide reductase
 - *e.g.*, glutathione or thioredoxin redox systems
- Hence may serve a regulatory function
- Reversible oxidation/reduction of methionine may protect proteins from more damaging forms of oxidative modification (*e.g.*, carbonyl formation)*

* Stadtman, E. R., Moskovitz, J., Berlett, B. S., and Levine, R. L. (2002) Mol. Cell. Biochem. 234-235, 3-9

A little more about HOCl-induced protein oxidation

- Primary products are chloro- and di-tyrosyl residues, amino acyl aldehyde adducts, and chloramines
- Represent unique products of myeloperoxidase activity, reflecting neutrophil and monocyte activity
- Serve as markers for oxidants generated as part of the inflammatory response
- Are elevated in atherosclerotic plaques
- Can be detected with sensitive and specific assays

See Heinecke, J.W. (2002) Free Radic. Biol. Med. 32, 1090-1101
Winterbourne, C.C. and Kettle, A.J. (2000) Free Radic. Biol. Med. 29, 403-409
Hazell, L.J. et al. (1996) J. Clin. Invest. 97, 1535-1544

Protein Oxidation

Society For Free Radical Biology and Medicine

A little more about lipid peroxidation adducts

- Indirect oxidative protein modification through attachment of lipid peroxidation breakdown products (*e.g.*, hydroxynonenal, malondialdehyde, acrolein) to Lys, Cys, and His residues in proteins
- Generated by a variety of oxidizing systems, predominantly metal-catalyzed oxidation and γ-irradiation
- Elevated in atherosclerosis and neurodegenerative diseases
- Detected with immunoassays specific for each type of protein adduct

See Uchida, K. (2000) Free Radic. Biol. Med. 28, 1685-1696

Protein Oxidation

Society For Free Radical Biology and Medicine

Some recent review articles on protein oxidation

- 1. Stadtman, E. R., and Levine, R. L. (2000) Protein oxidation. *Ann N Y Acad Sci* 899, 191-208
- Shacter, E. (2000) Quantification and significance of protein oxidation in biological samples. *Drug Metab. Rev.* 32, 307-326
- 3. Davies, M. J., Fu, S., Wang, H., and Dean, R. T. (1999) Stable markers of oxidant damage to proteins and their application in the study of human disease. *Free Radic Biol Med* **27**, 1151-1163
- 4. Sayre, L. M., Smith, M. A., and Perry, G. (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. *Curr Med Chem* **8**, 721-738
- 5. Winterbourn, C. C., and Kettle, A. J. (2000) Biomarkers of myeloperoxidase-derived hypochlorous acid. *Free Radic Biol Med* **29**, 403-409
- Baynes, J. W., and Thorpe, S. R. (2000) Glycoxidation and lipoxidation in atherogenesis.
 Free Radic Biol Med 28, 1708-1716
- Greenacre, S. A., and Ischiropoulos, H. (2001) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction.
 Free Radic Res 34, 541-581
- 8. Shringarpure, R., Grune, T., and Davies, K.J. (2001) Protein oxidation and 20S proteasomedependent proteolysis in mammalian cells. *Cell Mol Life Sci* **58**, 1442-1450

Protein Oxidation