Enzymatic oxidation of lipids: mechanisms and functions.

Valerie B. O'Donnell, PhD.

Cardiff University.

Enzymatic lipid oxidation: involves an enzyme catalyst, and gives very specific stereo- and regiospecific products.

Non-enzymatic: does not form specific products, many stereo- and positional isomers formed.

Initially involves hydrogen abstraction from a carbon, with oxygen insertion forming a lipid peroxyl radical

LH
$$\longrightarrow$$
 L• $\xrightarrow{O_2}$ LOO•

3 main pathways that generate oxidized lipid signaling mediators

HpETEs,
HETE,HpODE,
HODE, leukotrienes,
lipoxins, hepoxylins,

Prostaglandins

EETs, 20-HETE, Leukotoxins, thromboxane, prostacyclin

Why have enzymes evolved to generate specific oxidized lipids?

Enzyme-generated products mediate specific bioactivities via receptor-dependent pathways that are under tight control. Physiological processes.

Example: Prostacyclin activates IP (GPCR) in response to bradykinin (etc.) generating cAMP.

Blocks platelet

activation

Smooth muscle

relaxation

Substrates: Unsaturated fatty acid from sn2 position of phospholipids: *arachidonate or linoleate, also n3 fatty acids*.

1-hexadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine

Release of substrate by phospholipase A2

PLA2 action not required for non-enzymatic peroxidation

What do we mean by stereo-, positional-, geometric-isomers, enantiomers, diastereomers?

- •There are lots and it's complex!!!
- 1. Positional: oxygen insertion on different carbons

2. Geometric: cis or trans isomers

Trans

Entgegen (opposite)

Cis

Z

Zusammen (together)

Can have different physical properties, e.g. melting/boiling pt.

3. Enantiomers: non-superimposable mirror images

The spatial arrangement of the molecules is different, they contain a chiral center.

Designated S or R depending on the order of the rotation of the groups attached to the chiral center.

4. Diastereomers: have more than one chiral center.

The four diastereomers of threonine

Relevant for oxidized lipids with multiple oxygen additions at different carbons.

How does this work with oxidized fatty acids?

Example: linoleate hydroperoxide made by 15-LOX

13S-hydroperoxy-9Z,11E-octadecadienoic acid

Generation of specific products by an enzyme: 15-LOX generation of 13(S)HpODE (*Z,E*)

Example:

Prostaglandins and isoprostanes:

Example

•COX-derived product prostaglandin F2α

•Non-enzymatic oxidation of arachidonate forms many different positional/stereoisomers of isoprostanes, including 8 isoprostane $F2\alpha$.

How does an enzyme make a specific product?

Which predominate in vivo?

Agonist-activated cells generate very specific products: e.g. collagen-activated platelet 12-LOX

Basal levels of isoprostanes versus COX-derived prostaglandins: similar in human urine at ng/ml although isoprostanes may be higher in some diseases.

Disease: In atherosclerosis, early lesions contain more 13(S)HpODE than other isomers, but late lesions show equal mix of racemic products..... What does this mean?

Activation of 12-LOX in platelets results in generation of only 12-HPETE with no other positional isomers

Positional isomers generated by platelet 12-LOX expressed in HEK 293 cells, sonicated, using arachidonate substrate.

Enantiomers of HETEs generated by platelet 12-LOX expressed in HEK 293 cells, sonicated, using arachidonate substrate.

Generation of various isomers by platelet 12-LOX.

Comparison of positional, geometric isomers and enantiomers generated by 15-LOX and copper oxidation of LDL.

Table I. Composition of Hydroxy Polyenoic Fatty Acids of In Vitro Oxidized Human LDL

Catalyst	Share (%)							
	13-HODE(Z,E)	13-HODE(E,E)	9-HODE(Z,E)	9-HODE(E,E)				
15-LOX	72±12	5±4	15±7	6±3				
n = 11	(85±5:15±5)		(51±1:49±1)					
$CuSO_4$	33 ± 12	22±8	25±5	20 ± 12				
n = 8	(51±1:49±1)		(50±1:50±1)					

Lipoxygenase-catalyzed LDL oxidation was carried out as described in the legend to Fig. 1. For copper catalyzed oxidation a 30-fold molar excess of copper over LDL was used. Analysis of the hydroxy linoleate (HODE) isomers was carried out by straight phase-HPLC. The sum of these isomers was set 100%. The enantiomer composition (S/R ratio given in parentheses) was determined by chiral phase HPLC. LOX-lipoxygenase.

Profile of HpODE products in a young human atherosclerotic lesion.

Profile of HODE products in a young human atherosclerotic lesion.

Table II. Enantiomer Composition of 13-Hydroxy Linoleic Acid (13-HODE) Isolated from Human Atherosclerotic Lesions and Oxidized LDL

n	Enantiomer	Share (%) mean±SD	Significance (S vs. R-isomer)	Comparison of the relative shares of S-isomers of 13-HODE significance P			
				PDAY			
19	13S-HODE	54.0±3.2	< 0.001				
	13R-HODE	45.0±3.2					
					Berlin		
17	13S-HODE	50.7±3.5	0.260	0.007			
	13R-HODE	49.3±3.5					
						15-LOX–trea	ted LDL
79	13S-HODE	71.1±1.3	< 0.001	< 0.001	< 0.001		
	13R-HODE	28.3 ± 1.3					
							Copper-treated LDL
13	13S-HODE	50.1±1.1	0.470	< 0.001	0.600	< 0.001	
	13R-HODE	49.9±1.1					
	19 17 79	 19 13S-HODE 13R-HODE 17 13S-HODE 13R-HODE 79 13S-HODE 13R-HODE 13 13S-HODE 	n Enantiomer mean±SD 19 13S-HODE 54.0±3.2 13R-HODE 45.0±3.2 17 13S-HODE 50.7±3.5 13R-HODE 49.3±3.5 79 13S-HODE 71.1±1.3 13R-HODE 28.3±1.3 13 13S-HODE 50.1±1.1	n Enantiomer mean±SD (S vs. R-isomer) 19 13S-HODE 54.0±3.2 < 0.001	n Enantiomer mean±SD (S vs. R-isomer) Comparison 19 13S-HODE 54.0±3.2 < 0.001	n Enantiomer mean±SD (S vs. R-isomer) Comparison of the relative 19 13S-HODE 54.0±3.2 < 0.001	PDAY 13S-HODE 54.0±3.2 < 0.001 -

Diversity of mammalian LOX superfamily as of 1999....

Ribbon diagram of rabbit 15-LOX

S.Gilmore, UCSF, M. Browner, Roche Biosciences

Formation and functions of 5-LOX products

Highly unstable

Stimulates multiple neutrophil functions at nM and sub uM ranges

Formation and functions of 15-LOX products

SCHEME 3. 12-LIPOXYGENASE PATHWAY

Formation of 12-LOX products

Functions:

12-H(P)ETE: little/no direct effects on platelet function. **Hepoxylins**: elevate calcium, induce vascular permeability, neutrophil chemoattractants

Transcellular formation of lipoxins

Chiang et al, Prostaglandins Leukot Essent Fatty Acids, 2005

COX isoforms

COX-1: platelets, gastric, renal constitutively expressed

COX-2: vessel wall, renal, induced in inflammation and cancer.

COX-3: controversial, thought to be a splice variant.

See Cayman Chemical website for interesting discussions on the current thinking regarding its existence.

http://www.caymanchem.com/app/template/cox3%2CHome.vm/a/z

Marnett, Curr Opin Chem Biol, 2000 http://twinstars.office110.co.jp/~ud/bbs/joyful.cgi

Formation of COX products

Glyceryl prostaglandins generated by COX-2

Kozak et al, J. Biol Chem, 2000

Glyceryl prostaglandins generated by murine macrophages from exogenous and endogenous substrate.

Control cells Zymosan-activated

Cytochrome P450.

Thromboxane synthase: TXA2

Prostacyclin synthase: PGI2

CYP epoxygenases: EETS formed by CYP2C, 2J in humans

CYP ω-oxidases: ω-terminus hydroxylation by CYP4A, 4F.

TX and PGI play opposing roles in regulation of vascular function.

Structures and signaling actions of EETs (EpETrEs): postulated to be endothelium-derived hyperpolarizing factors.

11,12 EpETrE. plays a role in the recovery of depleted Ca2+ pools in cultured smooth muscle cells

14,15 EpETrE. Made in rat and rabbit liver microsomes.

5,6 EpETrE. In neuroendocrine cells, such as the anterior pituitary and pancreatic islet, (±)5(6)-EpETrE has been implicated in the mobilization of Ca2+ and hormone secretion

8,9 EpETrE. reduces GFR through cyclooxygenase-dependent preglomerular vasoconstriction.

17,18 EPETE. Metabolite of EPA, activator of BK-type calcium activated potassium ion channels in vascular smooth muscle cells

14,15 EpETE. Metabolite of EPA. Activity unknown

Eicosanoid signaling via 7-transmembrane domain GPCRs.

Signaling by oxidised lipids via GPCRs.

Signaling by oxidised lipids via nuclear receptors.

20-HETE, formed by ω-hydroxylation.

Summary of vascular signaling by 20-HETE and EETs.

Roman, Physiol. Rev. 82: 131-185, 2002 *Also*: Spector et al, Prog Lipid Res, 2004

Inactivation of lipid signaling pathways.

Inactivation of lipid signaling pathways.

Metabolic Fate of EETs and 20-HETE

Pharmacological inhibitors for enzymatic lipid signaling pathways.

