Methods to Quantify Nitric Oxide en vivo:

Concepts and Considerations

Atmospheric Nitrogen Oxides

Nitric Oxide

•N≡O

Colorless Gas

Free Radical

Potent Vasodilator (EDRF)

NO Production by Nitric Oxide Synthase

L-Arginine

N^G-Hydroxy-L-Arginine

L-Citrulline

Nitric Oxide Synthase (NOS) Isoenzymes

Nitric Oxide is a Pleiotropic Regulator of the Immune, Cardiovascular and Nervous Systems

The Chemistry of Nitric Oxide **Dictates its Physiological Metal Complexes/Alkyl Radicals Activity Guanylate Cyclase Cytochromes Lipid Radicals Direct** IRP-1 Ribonucleotide reductase **L-Arginine eNOS** O_2 or O_2 Indirect nNOS **INOS RNOS Oxidation Nitration Nitrosation DNA Strand Breaks Nitrotyrosine Lipid Peroxidation Nitrosothiols Nitroguanosine Hydroxylation Nitrosamines**

Methods to Quantify NO and its Metabolites in Extracellular Fluids and/or Tissue

- Gas Phase Chemiluminescence (NO)
- Spectrophotometric Assays for Oxidized Metabolites of NO (Nitrite/Nitrate)

Griess Assay
Fluorescence Assay
DAF-2 Bio-imaging

 Spectrophotometric Assays for RSNOs Saville Assay
 Modified Saville Assay

Methods to Quantify NO and its Metabolites in Extracellular Fluids and/or Tissue

- Gas Phase Chemiluminescence (NO)
- Spectrophotometric Assays for Oxidized Metabolites of NO (Nitrite/Nitrate)

Griess Assay

Fluorescence Assay

DAF-2 Bio-imaging

Spectrophotometric Assays for RSNOs
 Saville Assay
 Modified Saville Assay

NO Detection by Gas Phase Chemiluminescence

Detection Principle:

NO is purged from an aqueous solution using an innert gas such as Ar or He and transferred to a mixing chamber where it reacts with O_3 under reduced pressure.

$$NO + O_3 \longrightarrow NO_2^* + O_2$$

 $NO_2^* \longrightarrow NO_2 + h \cdot v$

The light emitted by excited NO₂ upon returning to the ground state is measured by photon counting (fmol-pmol). Not very useful when attempting to quantify NO in physiological fluids such as serum, plasma or urine. Why?

Autoxidation of NO

$$2NO + O_2 \longrightarrow 2NO_2$$

$$2NO + 2NO_2 \longrightarrow 2N_2O_3$$

$$2N_2O_3 + H_2O \longrightarrow 4NO_2^- + 2H^+$$

 $4NO + O_2 + 2H_2O \longrightarrow 4NO_2 + 4H^+$

Methods to Quantify NO and its Metabolites in Extracellular Fluids and/or Tissue

- Gas Phase Chemiluminescence (NO)
- Spectrophotometric Assays for Oxidized
 Metabolites of NO (Nitrite/Nitrate)

Griess Assay

Fluorescence Assay DAF-2 Bio-imaging

Spectrophotometric Assays for RSNOs
 Saville Assay
 Modified Saville Assay

Griess Reaction

Sulfanilamide

$$H_2NSO_3$$
 $NH_2 + NO^+$
 $NH_2 + NO_2$
 $NH_2 + NO_3$
 $NH_2 + NO_4$
 $NH_2 +$

Although *Nitrite* is Produced from NO Autoxidation, *Nitrate* is the Major NO-Derived Metabolite in Plasma and Urine:

Role of *Hemoglobin*

2Hb-Fe⁺²O₂ +
$$3NO_2$$
 + $2H$ + $2Hb$ -Fe⁺³ + $3NO_3$ + H_2O

$$4Hb-Fe^{+2}O_2 + 4NO_2 + 4H^+ \rightarrow 4Hb-Fe^{+3} + 4NO_3 + O_2 + 2H_2O$$

Hb-Fe⁺²O₂ + NO
$$\longrightarrow$$
 Hb-Fe⁺³ + NO₃

Quantification of NO-Derived NO₃⁻ and NO₂⁻ in Extracellular Fluids

$$NO_3^- + FAD + NADPH \xrightarrow{NR} NO_2^- + NADP^+$$

- Nitrate Reductase (NR) Converts all NO₃⁻ to NO₂⁻
- All unreacted NADPH must be oxidized
- NO₂ quantified by Griess Reaction

Grisham, **M.B.** et.al Quantitation of nitrate and nitrite in extracellular fluids. *Methods Enzymol* 1996 268:237-246.

LPS Induces Nitric Oxide Production In Vivo

Measurement of NO₂⁻/NO₃⁻ in Plasma Using the Griess Reagent: *Problems and Considerations*

- Heparin may produce precipitant upon addition of Griess Reagent. Addition of protamine sulfate will remove heparin (<u>Suggestion:</u> <u>Use serum or calcium chelators such as EDTA or citrate</u>).
- NO₂⁻/NO₃⁻ may be underestimated in hemolyzed plasma or Serum due to Hb-catalyzed oxidation of NO₂⁻ (Suggestion: Ultrafilterplasma or serum to obtain a low molecular weight fraction; < 15,000).</p>
- The presence of some *plasma* or serum-associated proteins may inhibit nitrate reductase (<u>Suggestion: Ultrafilter plasma or serum to obtain a low molecular weight fraction</u>).

Simultaneous Quantification of Nitrite and Nitrate by HPLC Using the Griess Reaction

Diazotization Coupling Reaction (Griess Reagent)

Rodriguez and Feelisch PNAS 100:336, 2003

Sensitivity:

1 pmol/ml for either anion (injection volume 100µl)

No interference by proteins or colored species

Sources of NO₂⁻/NO₃⁻ in Extracellular Fluids (Blood, Lymph, Urine, Saliva):

NO

Bacteria (Enteric; Oral)

 Diet (need for fasting or nitrate/ nitrite-free chow)

Methods to Quantify NO and its Metabolites in Extracellular Fluids and/or Tissue

- Gas Phase Chemiluminescence (NO)
- Spectrophotometric Assays for Oxidized
 Metabolites of NO (Nitrite/Nitrate)

Griess Assay

Fluorescence Assay

DAF-2 Bio-imaging

Spectrophotometric Assays for RSNOs
 Saville Assay
 Modified Saville Assay

N-nitrosation of 2,3 diaminonaphthalene (DAN) to yield 2,3-naphthotriazole (NAT)

N-Nitrosation of DAN By Extravasated PMNs

Methods to Quantify NO and its Metabolites in Extracellular Fluids and/or Tissue

- Gas Phase Chemiluminescence (NO)
- Spectrophotometric Assays for Oxidized Metabolites of NO (Nitrite/Nitrate)

Griess Assay Fluorescence Assay DAF-2 Bio-imaging

Spectrophotometric Assays for RSNOs
 Saville Assay
 Modified Saville Assay

Bioimaging of Nitric Oxide Using Diaminofluoresceine-2 (DAF-2)

Advantages: Sensitivity for NO (5 nM in vitro) with high temporal and spatial resolution.

No cross-reactivity to NO₂-/NO₃- and ONOO-

Kojima et al., Biol.Pharm. Bull. (1997)

Assay limitations: Possible interference by reducing agents and divalent cations, requires standardized illumination conditions

Propagation of NO Wave during Stimulation of Endothelial Cells with the Calcium Ionophor, A23187 (1 µM)

Feelisch et. al. Unpublished Observations

The Chemistry of Nitric Oxide **Dictates its Physiological** Metal Complexes/Alkyl Radicals **Activity Guanylate Cyclase Cytochromes** C,O,N Radicals (Lipid Radicals) **Direct L-Arginine eNOS** Indirect nNOS **INOS RNOS Oxidation Nitration Nitrosation DNA Strand Breaks Nitrotyrosine Lipid Peroxidation Nitrosothiols Nitroguanosine Hydroxylation Nitrosamines**

Physiological Roles of Nitrosothiols (RSNOs)

Potent vasorelaxants.

Antiplatelet activity.

Antimicrobial activity.

Regulation of vasodilation/ oxygenation (hemoglobin).

Intermediates in the metabolism of organic nitrites and nitrates.

RSNOs

S-Nitrosoglutathione (GSNO)

S-Nitrosohemoglobin (HbSNO)

S-Nitrosoalbumin (AlbSNO)

Regulation of cell signaling/ protein functions.

NO-Dependent Formation of S-Nitrosothiols (RSNOs): Large Amounts of NO

$$2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$$

$$2 \text{ NO}_2 + 2 \text{ NO} \longrightarrow 2 \text{ N}_2\text{O}_3$$

$$2 N_2 O_3 + 2 RSH \longrightarrow 2 RSNO + 2 NO_2^-$$

RSNOs

S-Nitrosohemoglobin (SNOHb)

S-Nitrosoglutathione (SNOGSH)

S-Nitrosoalbumin (SNOAlb)

NO-Dependent Formation of S-Nitrosothiols (RSNOs): <u>Physiological</u> Levels of Oxygen, NO and RSH

$$2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$$

$$2 \text{ NO}_2 + 2 \text{ RSH} \longrightarrow 2 \text{ NO}_2^- + 2 \text{ RS}^+ + 2 \text{H}^+$$

RSNOs

S-Nitrosohemoglobin (SNOHb)

S-Nitrosoglutathione (SNOGSH)

S-Nitrosoalbumin (SNOAlb)

Methods to Quantify NO and its Metabolites in Extracellular Fluids and/or Tissue

- Gas Phase Chemiluminescence (NO)
- Spectrophotometric Assays for Oxidized Metabolites of NO (Nitrite/Nitrate)

Griess Assay Fluorescence Assay DAF-2 Bio-imaging

Spectrophotometric Assays for RSNOs

Saville Assay

Modified Saville Assay

Saville Reaction

RSNO +
$$Hg^{+2} \longrightarrow RS^- + Hg^{+3} + NO^+$$

Saville/Griess Reaction

Sulfanilamide

H₂NSO₃

NH₂ + NO⁺ + RS⁻
$$\leftarrow$$
 RSNO + Hg⁺²

H₂NSO₃

N-(1-Naphthyl)ethylenediamine

H₂NSO₃

Azo Dye ($\lambda_{max} = 540 \text{ nm}$)

Methods to Quantify NO and its Metabolites in Extracellular Fluids and/or Tissue

- Gas Phase Chemiluminescence (NO)
- Spectrophotometric Assays for Oxidized Metabolites of NO (Nitrite/Nitrate)

Griess Assay
Fluorescence Assay
DAF-2 Bio-imaging

Spectrophotometric Assays for RSNOs
 Saville Assay
 Modified Saville Assay

Fluorometric Determination of S-Nitrosothiols (RSNO)

S-Nitrosothiol Formation in Blood of LPS-Treated Rats

The Chemistry of Nitric Oxide **Dictates its Physiological Activity Guanylate Cyclase Cytochromes** C,O,N Radicals (Lipid Radicals) **Direct L-Arginine eNOS** Indirect nNOS **INOS RNOS Oxidation Nitration Nitrosation DNA Strand Breaks Nitrotyrosine Lipid Peroxidation Nitrosothiols Nitroguanosine Hydroxylation Nitrosamines**

Interaction Between Superoxide and Nitric Oxide: Formation of Peroxynitrite/Peroxynitrous Acid

$$O_2^- + NO \xrightarrow{+ H^+} ONOO^ ONOO^- + H^+ \longrightarrow ONOOH$$
 $ONOOH \longrightarrow ONOOH^* ("OH- + NO_2-")$
 $ONOOH^* \longrightarrow NO_3^- + H^+$

Sum:
$$O_2^- + NO \longrightarrow NO_3^-$$

Peroxynitrite Nitrates Tyrosine to Yield 3-Nitrotyrosine

3-Nitrotyrosine Formation in vivo:

Specific Footprint for Peroxynitrite?

Generation of 3-Nitrotyrosine

Myoglobin-Catalyzed Formation of 3-Nitrotyrosine (3-NT)

LSU Health Sciences Center

Martin Feelisch (NitroMed)
Steve Laroux (Harvard)
Kamer Kilinc (Ankara Univ)

Albany College of Medicine

David Jourd'heuil

Grambling State University

Allen M. Miles

National Cancer Institute

David A. Wink
Mike Espey
Katrina Miranda (Univ Arizona)

