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The Central Dogma of Molecular Biology
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Redox Regulation of Gene
EXxpression

Compensatory changes in gene
expression in response to metabolic and
environmental cues that directly or
indirectly perturb cellular redox
homeostasis



Transcription Factors

Proteins that bind DNA (gene) in a sequence-
specific manner

Recruit other proteins to the site of DNA
binding including RNA synthetic machinery

Resulting interactions cause a change in the
rate of transcription initiation of the affected

gene

This leads to a change in the steady state
level of RNA (and protein) from the gene



OxyR and Sox R/S Systems

* Prokaryotic
» H,0, and O, - sensitive, respectively

Gisela Storz Bruce Demple



OxyR is Activated by H, 0O,
Induced Disulfide Formation

no transcriptional transcriptional
activation activation

Science, Vol 279: 1655, 1998



SOxXR is Activated by O," - Mediated
Disruption of an Fe/S cluster

(Cellular resistance to:
Superoxide stress

NO’-generating
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Speaking of Fe/S clusters...

Post-transcriptional regulation is another way
to change RNA and protein levels in cells

One important known mechanism for post-
transcriptional regulation in eukaryotic cells
involves Fe/S clusters



IRE & IRP, A Classical Tale

* Iron Responsive Elements (IRE)
— Regulate Ferritin mRNA translation
— Regulate Transferrin Receptor mRNA stability
— Effects on other Iron utilizing proteins

* Iron Responsive Proteins (IRP1/2)
— Cytosolic aconitase
— Bind IREs
— Contain Fe/S Clusters
— lron Sensitive
— Superoxide sensitive



IREs are RNA Stem-Loops
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IRPs bind IREs to control translation and
RNA stability
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Eukaryotic Transcription Factors

* Modular structures
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« Some require ligands
— Nuclear hormone receptors



Examples of Redox Regulated
Mammalian Transcription Factors

AP-1

— Ref-1 & Thioredoxin

Egr1

— Zinc fingers, most common motif in the human proteome
HIF-1a / ARNT

-0,

= et

— a-ketoglutarate

— Ascorbate

PAS (Per/Arnt/Sim) Domain Proteins (NADPH &
NADH sensitive)



AP-1 (activator protein-1) activity is
controlled by reversible cysteine
oxidation
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Evans, AR, et al., Mutat. Res. 467, 83-108, 2000



Zinc Fingers are a common redox
sensitive DNA binding motif

25

HOOC---N

Alberts et al., Molecular Biology of the Cell, 41" Edition




HIF-1o Is Post-Translationally
Regulated

Hypoxia VHL-mediated
biguitination of HIF

Prolyl
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HIF-1a is O, sensitive
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Wang GL, et al., Proc Natl Acad Sci 92(12): 5510, 1995



PAS Domain Proteins are
Sensitive to Reduced NADPH
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All of these are wonderful examples of
redox regulated transcription factors,

BUT ...

what good will they do if their DNA
binding sites are inaccessible?



For Example, DNA Methylation can Block
the Binding of Transcription Factors

Probe Methylation

i, \A
AP2 — f

Huang Y, et al, Free Radic Biol Med.23:314, 1997



Overview of Cytosine Methylation

5-methyl cytosine — the 5" base
CpG dinucleotides

Distribution of CpG in the genome
Cytosine methylation patterns
DNA Methyltransferases (DNMTSs)



5-Meth Zlcztosine

* The only modified base found in the human genome.
*Occurs in the nucleotide doublet 5’- CpG - 3’

* Propagated in somatic tissue by CpG methyltransferase.
*5-methylcytosine is necessary for organism viability.

*CpG islands are frequently associated with the promoter and 5’end
of genes.

* CpG hypermethylation associated with transcriptional silencing




DNA Methylation and Cancer

Cancer cells have less methylated cytosine
than normal cells

Nevertheless some regions of the cancer cell
genome become aberrantly hypermethylated

Cytosine methylation is associated with gene
silencing



Genes become inappropriately turned
off or on by alterations in mammalian
genomic DNA methylation patterns

Methylated DNA is associated with a
repressive chromatin structure

Many tumor suppressor genes are
inactivated by aberrant cytosine
methylation



Aberrant CpG Methylation Leads to Tumor
Suppressor Gene Silencing in Human Cancers

Gene Tumors with Gene Tumors with
methylation methylation
RB Retinoblastoma VHL Renal carcinoma

p16/INK4A Most common solid p15/INK4B Acute leukemia,

tumors Burkitt lymphoma
p27/KIP Pituitary cell line h-MLH1 Colon
E-cadherin Bladder, breast, BrCA1/2 Breast Cancer
colon, liver tumors
WT-1 Wilms tumors maspin Breast Cancer

Baylin SB et al., (1998) Adv Cancer Res. 72:141-96. Herman JG et al., (1997)
Cancer Res. 57:837-41. Domann FE et al., (2000) Int J Cancer. 85:805-810.



Distribution of methylated CpG in Normal Cells

Methylated CpG

Unmethylated CpG



Distribution of methylated CpG in Cancer Cells

Methylated CpG

Unmethylated CpG



How do these aberrant methylation
patterns emerge?

DNA methyltransferases (DNMTs) are
upregulated in cancer cells

DNMTs require the metabolite S-adenosy!
methionine

Cancer cells often display symptoms of
oxidative stress



Is DNA Methylation Redox Sensitive?

‘ Biological Response

GSH

Compensatory increase



Overview of one carbon metabolism featuring the SAM cycle
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* Note the metabolic link to cysteine and thus glutathione (GSH) synthesis




Hypothesis

Perturbations in one carbon metabolite
pools cause the aberrant DNA
methylation patterns observed in human
cancer and other pathobiological states



Methylated DNA is associated with a
repressive chromatin structure

Wade P, Nature Genetics 37, 212 - 213 (2005)



What's Chromatin?

Located In cell nucleus
DNA and its associated proteins

DNA exists on nucleosomes composed
of histone proteins

One histone octamer contains 2
subunits each of H2A, H2B, H3, H4



Nuclear Organization
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Chromatin Structure and Organization
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Nucleosome Structure

K. Luger, et al., Nature 389, 251 — 260, 1997



Nucleosome Tails are Post-
Translationally Regulated

N-terminal tails: signaling platforms?  Nucleosome core
I | |
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Modifications to Nucleosomes

Acetylated (Lys)
Methylated (Lys, Arg)
Phosphorylated (Ser)
Ubiquitinated (Lys)
ADP-ribosylated

?



The “Histone Code”

(Ac) (Ae) (a9)




HATs, HDACs, and HMTs

Histone Acetyltransferase (HAT)
— Acetyl-CoA is the co-factor

Histone Deacetylase (HDAC)

Histone Methyltransferase (HMT)
— SAM is the cofactor

Determinants of the chromatin
architecture, or “epigenetic landscape”



Epigenetics

A heritable change in phenotype that
is independent of a change of genotype.

RNA Editing

RNA Interference
Histone Modification
5-methylcytosine

Holliday Hypothesis- ca. 1975




Chromatin Structure Governs
DNA Accessibility

Plasticity of the epigenetic state

Active accessbl Inactive

Georgopouos K, Nature Reviews Immunology 2, 162, 2002



Some transcription factors function through
chromatin remodeling

De-acetylation of histones
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One Type of Histone Deacetylase,
Sir2, Yields a Unique Product
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Moazed D, Curr Opin Cell Biol. 13(2): 232, 2001




An Increase in Sir2 Extends Lifespan
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Summary

» Cells respond to redox challenges with
compensatory responses

— Direct transcription factor activation
— Alterations in mRNA translation

— DNA methylation

— Histone modifications

— Higher ordered chromatin structure
« Chromatin Accessibility!!!!
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