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OXIDATIVELY GENERATED DAMAGE TO DNA

OLIGONUCLEOTIDE STRAND BREAKS- OLIGONUCLEOTIDE STRAND BREAKS
(hydrogen abstraction at 2', 4' and 5' carbons)

ABASIC SITES- ABASIC SITES
* hydrolysis of the N-glycosidic bond (modified bases)
* oxidation at C1‘ (2-deoxyribonolactone)

- BASE LESIONS (about 80 modifications identified in model studies)

- COMPLEX LESIONS (tandem and clustered damage)COM  S ONS (tandem and clustered damage)

- DNA-PROTEIN CROSSLINKS

- ALDEHYDE ADDUCTS TO AMINOBASES
(breakdown products of LOOH and oxidation products of 2-deoxyribose)

- ALKALI-LABILE SITES
(abasic sites and a few oxidized bases including thymine glycols, 5-formymuracil, 
hydantoins …)



REACTIVE OXYGEN AND NITROGEN SPECIES
( ti it )(reactivity)

S id (h d id ) di l- Superoxide (hydroperoxide) radical: no detectable reactivity toward DNA

- Hydrogen peroxide: low reactivity with adenine and implication in Fenton reactionHydrogen peroxide: low reactivity with adenine and implication in Fenton reaction

- .OH radical: reacts with all bases and the sugar moiety

- Singlet oxygen (1O2): [4+2]-cycloaddition to guanine

Ozone (O ): only reacts with pyrimidine bases- Ozone (O3): only reacts with pyrimidine bases

- HOCl: halogenation of purine and pyrimidine bases

- Peroxynitrite (ONOO-): reacts with guanine (addition, oxidation)

- One-electron oxidizing agents: hydration & deprotonation of base radical cations



DNA lesions
(model compounds)
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Oxidatively generated damage to cellular DNAy g g
(outlines)

- Single base modificationsg

* singlet oxygen oxidation of guanine

* damage induced by OH radical to the bases

* one-electron oxidation of the bases

- Complex modifications (one radical oxidation hit)p ( )

*  DNA protein cross-links

*  Tandem base lesions  Tandem base lesions



OXIDATIVELY GENERATED BASE DAMAGE 
TO CELLULAR DNATO CELLULAR DNA

(current situation)

*    Isolated DNA and model compounds: 
More than 80  lesions have been identified as oxidative degradation More than 80  lesions have been identified as oxidative degradation 

products of thymine, cytosine, adenine, guanine and 5-methylcytosine

*   Cellular DNA: only 14 base lesions have been 
t l  d  accurately measured: 

Adenine (2) 
Guanine (2)
Thymine (6)
Cytosine (4)



Effects of solar radiation on cellular DNA

UVB (290-320 nm)UVA (320-400 nm)

Indirect effect:
photosensitization

base oxidation

Direct effect:
dimeric pyrimidine
base photoproductsbase oxidation

pyrimidine dimers
base photoproducts

(Cadet et al, Photochem. Photobiol. Sci  2009 )



Singlet oxygen oxidation of cellular DNA
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Si l t id ti f iSinglet oxygen oxidation of guanine
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Formation of 8-oxodGuo in the DNA of human skin upon exposure 
to UVA radiationto UVA radiation
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Radiation-induced damage to DNAg
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Aims of the work:
identification of the lesions (biomarkers)- identification of the lesions (biomarkers)

- measurement of DNA damage in cells



HPLCMS/MS of oxidized nucleosides
(separation detection quantitation)(separation - detection – quantitation)

Hydrolyzed DNA 
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Gamma ray-mediated formation of DNA damage 
in the DNA of of human monocytesin the DNA of of human monocytes

(lesions /109 DNA bases/ Gy)
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MAIN OXIDATIVELY GENERATED THYMINE DAMAGE IN CELLULAR DNA

O OO
thymine glycol

O OO
thymine glycol

MAIN OXIDATIVELY GENERATED THYMINE DAMAGE IN CELLULAR DNA
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OH radical reactions of the guanine moiety at C8OH radical reactions of the guanine moiety at C8
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One-electron oxidation of cellular DNAOne-electron oxidation of cellular DNA

- High intensity UV laser photolysis (266 nm)
suitable way to generate purine and pyrimidine radical cationssuitable way to generate purine and pyrimidine radical cations

Specific oxidation of guanine:- Specific oxidation of guanine:
predominant formation of 8-oxo-7,8-dihydroguanine

- Charge transfer reaction
with guanine bases the likely sinks of hole transfer

(Angelov et al, JACS 1997,  Douki et al , Topics Curr Chem, 2004), Cadet et al, in press)



Oxidized nucleosides induced in cellular DNA upon exposure 
to high intensity 266 nm laser pulses (biphotonic ionization)g y p ( p )
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Nucleophilic reactions of the guanine radical cation
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OXIDATIVELY GENERATED DAMAGE TO DNAOXIDATIVELY GENERATED DAMAGE TO DNA
(clustered modifications)

- DNA-protein crosslinks

- Tandem lesions 
- Intranucleoside (sugar base)- Intranucleoside (sugar-base)
- Vicinal bases



Formation of a guanine-lysine cross-link
(one electron oxidation reaction)
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(one-electron oxidation reaction)
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Oxidatively generated tandem DNA damage
(one initial radical hit)
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HPLC-MS/MS detection of (5’R)-5’,8-cyclodAdo in the DNA of γ-irradiated cells
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Radiation induced formation of (5’S) 5’ 8 cyclo 2’ deoxyadenosineRadiation-induced formation of (5 S)-5 ,8-cyclo-2 -deoxyadenosine
in cellular DNA

- The role of CSA in the response to oxidative DNA damage in human cells. M D’Errico et al. Oncogene (2007) 26, 
4336–4343

Human keratinocytes KN1RO exposed to X-rays (5 Gy)Human keratinocytes  KN1RO exposed to X rays (5 Gy)
Measurement of (5’S)-cyclodAdo by HPLC-MS 
Rate of formation of (5’S)-cyclodAdo : 20 lesions per 109 normal  nucleosides and per Gy

- Radiation-induced formation of purine cyclonucleosides  in DNA: product distribution and inhibiting effects of 
oxygen.  N Belmadoui,  F BoussicaultT, JL Ravanat, C Chatgilialoglu and J Cadet (in preparation)

Human monocytes exposed to gamma-rays (2 kGy)
Measurement of (5’R)-cyclodAdo by HPLC-MS /MS
Rate of formation of (5’R)-cyclodAdo : 0.2 lesions per 109 normal  nucleosides and per Gy
Shielding effect against damage in nuclear DNA with respect to naked DNA: at least 3 orders of magnitude

The radiation-induced formation of purine 5’,8-cyclonucleosides is, at least,p , y , ,
2 orders of magnitude lower than than reported previously!



OXIDATIVELY GENERATED DAMAGE TO CELLULAR DNA
(conclusions)

- The steady-state level of the main oxidized bases is within the range of 1 lesion per 
106 - 107 normal bases whereas tandem lesions are generated at best with a much 
lower efficiency than single lesionslower efficiency than single lesions.

- HPLC-MS/MS and HPLC-ECD are operative for measuring acute effects of strong 
idi i  t  d f  l l f DNA  30  oxidizing agents and for level of DNA > 30 µg .

- Enzymic assays are appropriate for low amounts of DNA and to deal with slights y y pp p f f g
variations in the level of oxidized bases (typically chronic exposure, antioxidants 
studies).

- Still a paucity of information on several lesions (secondary oxidation products,  
tandem modifications, DNA-protein cross-links)

- Aldehyde-aminobase adducts (oxidation of the 2-deoxyribose moiety)



Reactions mediated by H atom abstraction at C4 of 2-deoxyribose 
within cellular DNAwithin cellular DNA
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