

METHODS FOR DETECTING MITOCHONDRIAL DNA DAMAGE

Scott Ballinger, Ph.D.

Univ. of Alabama at Birmingham 1530 3rd Ave. South, VHG019 Birmingham, AL 35294 USA

> Phone: 205/934-4621 Fax: 205/975-1126 Email: sballing@uab.edu

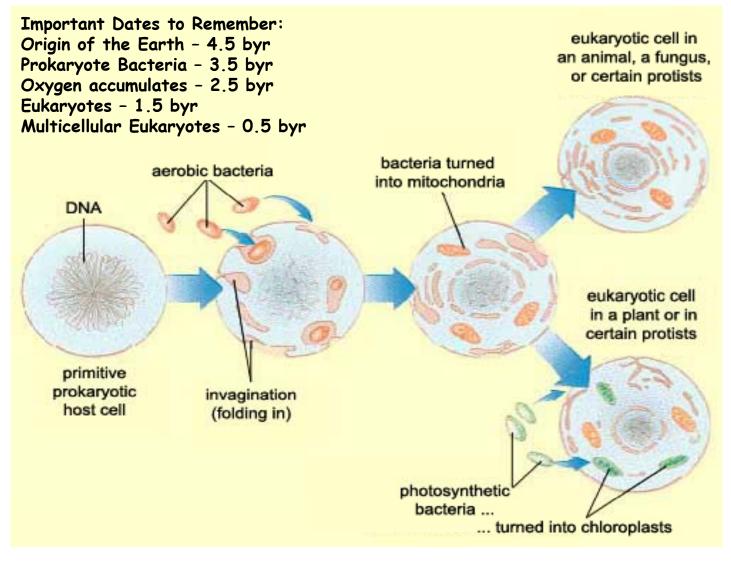
Methods for Detecting Mitochondrial DNA Damage

Scott W. Ballinger, PhD University of Alabama at Birmingham Department of Pathology Molecular and Cellular Pathology Center for Free Radical Biology

Outline

The Mitochondrion:

- Functions
- Characteristics
- The Mitochondrial DNA (mtDNA)

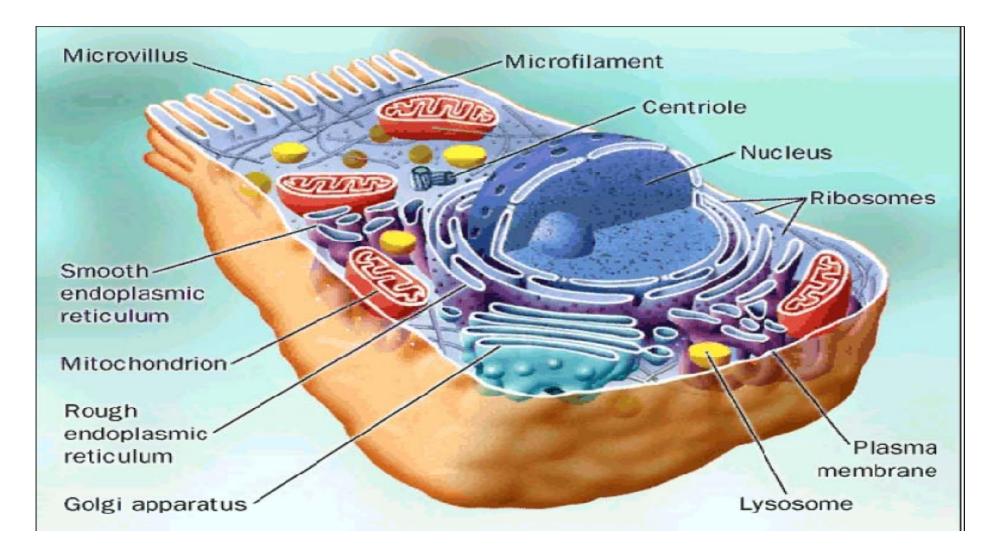

Why Would You Want to Measure mtDNA Damage?

Methods for Detection:

- HPLC-ECD: 8-0x0-2'-deoxyguanosine
- Southern methods
- Quantitative PCR

Summary - Conclusions

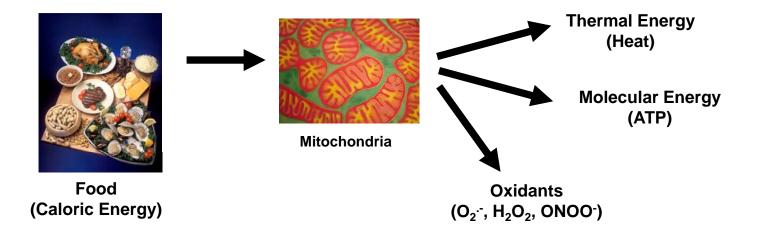
Origins of the Mitochondrion



http://thebrain.mcgill.ca/flash/a/a_05/a_05_cl/a_05_cl_her/a_cl_her.html

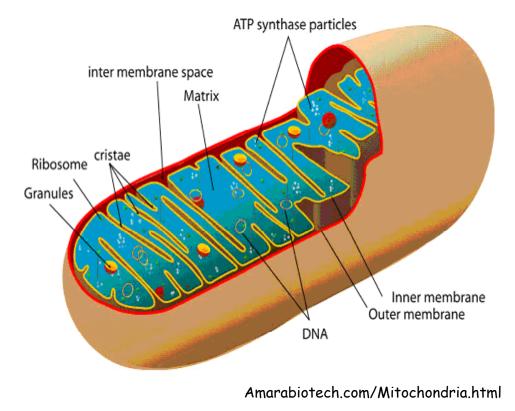
Lynn Margulis

The Eukaryotic Cell



EM View of the Mitochondrion

From Trends in Biochemical Sciences


Mitochondria are functionally complex

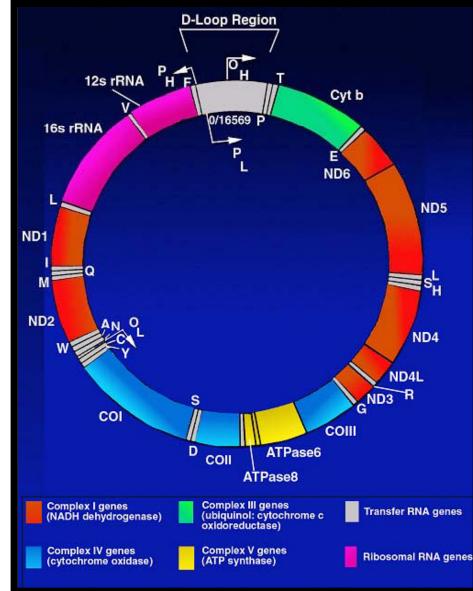
- Energy Production
- Thermogenesis
- Oxidant Production

Mitochondria are structurally complex

- 10% 20% of total cell protein
 (~1500 different polypeptides)
- 20% volume of the eukaryotic cell
- 1/3 total cell membrane
- Mobile, shape changing
- mtDNA

The Mitochondrial DNA (mtDNA)

Circular, double-stranded, 16,569 bp (humans)


- Maternally inherited
- Essentially lacks introns
- Mitochondrial genetics is complex

Encodes 37 genes essential for oxidative phosphorylation (OXPHOS)

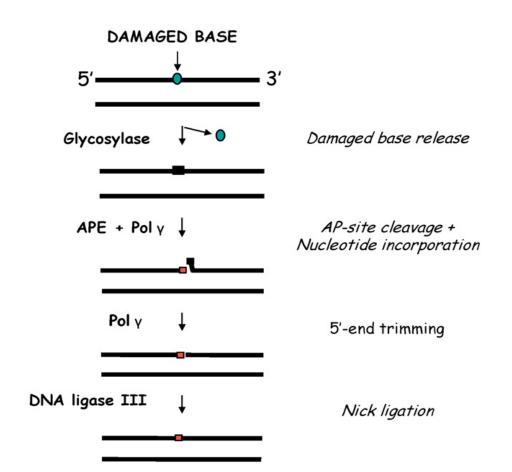
- 13 polypeptide subunits
- · 22 tRNAs
- 2 rRNAs

Nuclear DNA encodes all remaining mitochondrial proteins

Pathogenic mutations associated with human disease have been reported in all 3 classes of mtDNA genes

MtDNA Damage and Repair

Relative to nuclear DNA, mtDNA appear more vulnerable to damage induced by toxicant/oxidant exposure


- Proximity to oxidant generation (matrix side of IM)
- Lack of histones (organized in "nucleoids")
- Accumulates lipophilic cations

Damage quantified is the net result of damage + repair

MtDNA Damage and Repair

Base excision repair (BER) appears to be the major repair mechanism in the mitochondrion

- DNA glycosylases
- AP endonuclease
- Pol γ
- DNA ligase

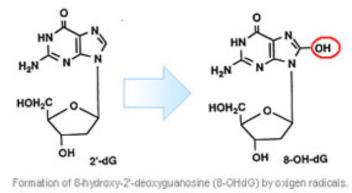
de Souza-Pinto et al., DNA Repair 7: 2008

Why Measure MtDNA Damage?

- Measure of mitochondrial damage/oxidative stress
- Biomarker of exposure to environmental toxicants
- Disease
 - AD
 - PD
 - Cancer
 - Atherosclerosis

Damage quantified is the net result of damage + repair

MtDNA Damage Assays


- HPLC-ECD: 8-oxo-2'deoxyguanosine

- Southern methods

- Quantitative PCR

Can be used to measure certain types of DNA base modifications, strand breaks and bulky adducts

8-oxo-2'-deoxyguanosine

H Kasai: Environmental Mutagen Research, Vol. 10, p73-78 (1988)

- Estimates of 8-oxodG lesions 1/130,000 bases (nDNA), 1/8000 bases (mtDNA) (Richter et al. PNAS 1988)
- Levels of oxidized bases in the mtDNA are several times greater than in nuclear DNA (Richter et al., 1988; Hudson et al., 1998)
- 8 oxodG can pair with A, leading to a TA transversion mutation (most 8 oxodG pairs correctly with C though).

High Performance Liquid Chromatography and Electrochemical Detection (HPLC-ECD)

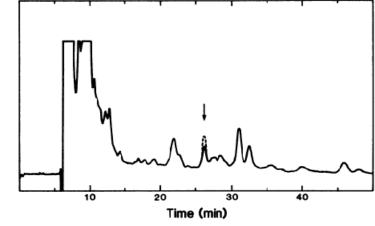


FIG. 1. Determination of oh⁸dG in mtDNA. DNA (40 μ g) isolated from rat liver mitochondria was enzymatically hydrolyzed and subjected to high-performance liquid chromatography in combination with electrochemical detection. The position of oh⁸dG in the chromatogram is indicated by the arrow. Dashed line represents a sample spiked with 10 pmol of oh⁸dG as standard.

Table 1. Formation of oh⁸dG in mtDNA by prooxidants

Conditions	oh ⁸ dG pmol per μg of mtDNA
Control	0.41
Alloxan	2.10
Alloxan/Ca ²⁺	1.67
Fe ³⁺	1.26
Alloxan/Fe ³⁺	1.94
y-Irradiation (15 krad)	
Mitochondria	0.94
mtDNA	2.70

nDNA had 16X lower 8-oxodG (0.025 pmol/mg)

Richter et al., PNAS 1988

Tissue ↓ Isolate Mitochondria ↓ Extract MtDNA ↓ Hydrolysis ↓ HPLC-ECD

Age Related Differences in 8-oxodG

Hudson et al. (Free Radic Res. 1998) compared 8-oxodG levels in liver harvested from young (6 months) vs. old (23 months) rats:

- a 2.5 fold increase in 8-oxodG in liver mtDNA with age.
- compared to nDNA, young animals had 5-fold higher 8-oxodG in the mtDNA; this difference was 12-fold higher in older rats.

Prenatal Stress

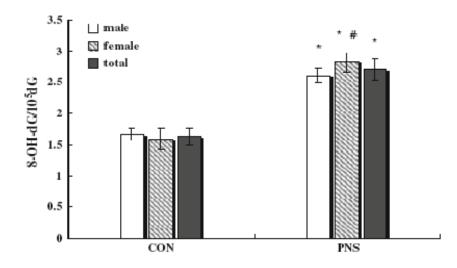
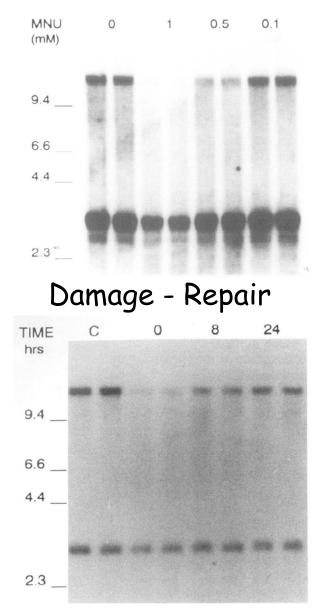


Fig. 3 The comparison of the value of 8-OH-dG/10⁵dG (the amount of 8-OH-dG in every 10^5 dG) in hippocampus of offspring rats. The contents of 8-OH-dG in female and male prenatal stressed offspring were significantly higher than that in their respective controls (P < 0.001). 8-OH-dG level was significantly higher in the female-stress group than in the male-stress group (P < 0.05), whereas there was no any gender-dependent difference in the control groups (CON: control; PNS: prenatal stress. * P < 0.001 vs. CON, # P < 0.05 vs. male)

Song et al., Neurochem Res (2009) 34: 739

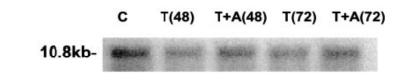
Offspring from females exposed to stress had significantly higher levels of 8oxodG in mtDNA extracted from hippocampus compared to controls

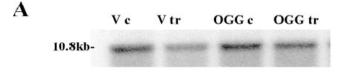
Advantages/Disadvantages

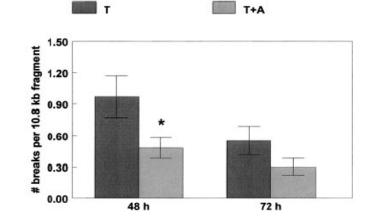

- Specificity
- Quantitative
- Uses a single product as an index of DNA damage
- Standard methods require isolation of mitochondria
- Requires microgram amounts of DNA
- DNA extraction can induce oxidative damage
- Transversional mutations are not common in the mtDNA

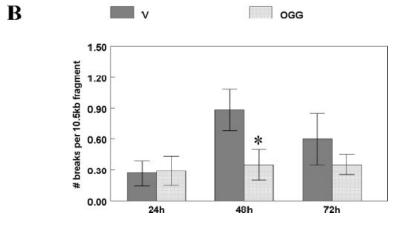
Southern Blot Assays: Assessment of Strand Breaks

Tissue **Extract Genomic DNA Restriction Digest** Southern transfer Probe (mtDNA)


Decreased product = Increased Damage


Dose Dependent Damage




LeDoux et al., Methods in Toxicology (1993)

Cytokine Induced mtDNA Damage: TNF α and INF γ

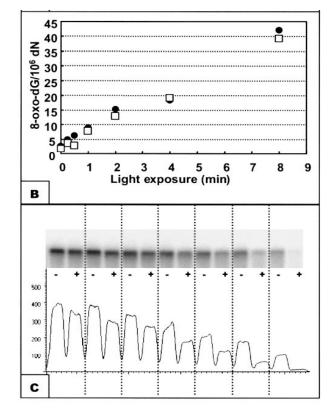
Druzhyna et al., JBC 2005

В

Α

Southern Blot Assays: Formamidopyrimidine Glycosylase (Fpg) Method

Extract Genomic DNA

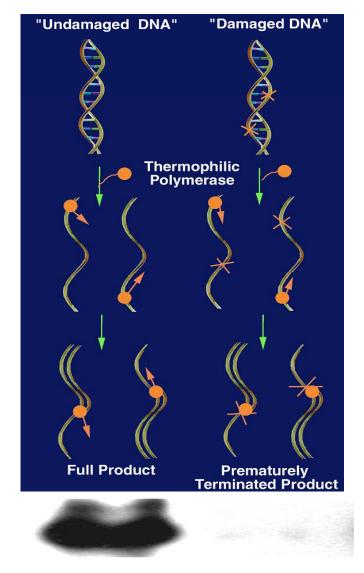

Restriction Digest

Treat with Fpg

Southern transfer

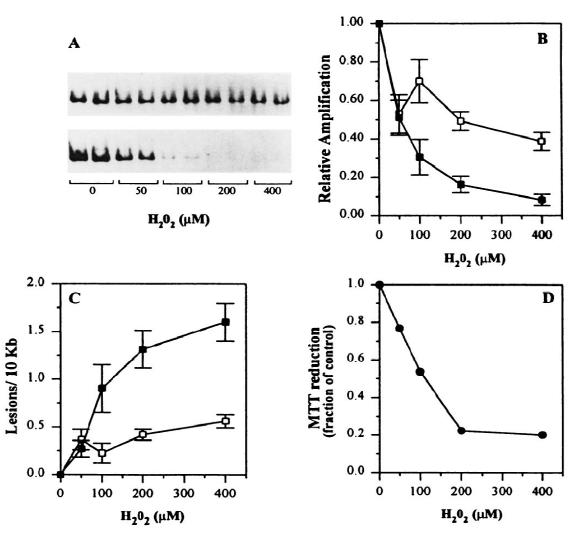
Probe

Photoactivated Methylene Blue Induced 8-oxodG

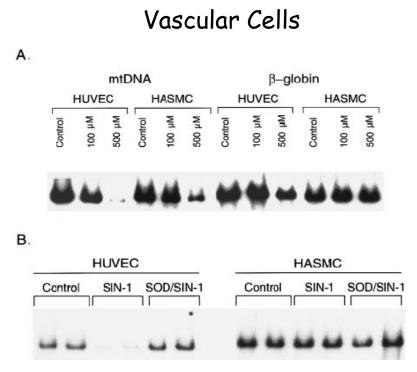

Anson et al., FASEB J. 2000

Advantages/Disadvantages

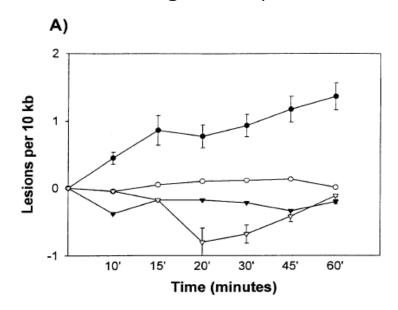
- Can be lesion specific
- Quantitative (relative to control)
- Does not require isolation of mitochondria
- Requires microgram amounts of DNA
- May measure only general DNA damage
- DNA extraction can induce oxidative damage


The Quantitative PCR (QPCR) Assay

- Undamaged mtDNA yields full length PCR products
- Damaged mtDNA causes the polymerase to stall or fall off resulting in an absence of the full length product
- Decreased full length product = increased mtDNA damage

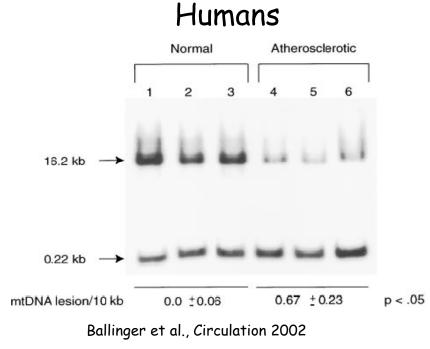

MtDNA vs. nDNA using QPCR

Tissue ↓ Extract Genomic DNA ↓ QPCR ("long" and "short") ↓ Electrophoresis


Yakes and Van Houten, PNAS 1997

Using QPCR to Assess Damage in Multiple Cell Types and Genes

Ballinger et al., Circulation Research 2000


Retinal Pigment Epithelium

Ballinger et al., Exp Eye Res 1999

Using QPCR to Assess Damage In Vivo

Mice

A Mitochondrial DNA Damage in Control and apoE -/- Aortas

	10 weeks	34 weeks	
	Control apoE	Control apoE	
16.0 kb →			
0.08 kb>			

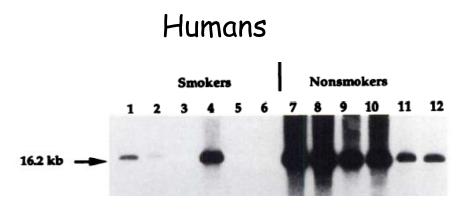
в

The Effects of Genotype and Age on mtDNA Damage (lesions/10 kb) in apoE -/- and Control Mice

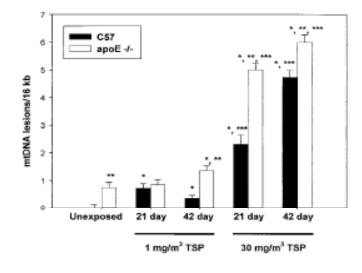
A	ge	
10 weeks	34 weeks	P value
0.00 (0.20)	0.45 (0.16)	0.09] Effects
0.58 (0.12)	1.32 (0.26)	0.013 _ of Age
0.018	0.008	
	10 weeks 0.00 (0.20) 0.58 (0.12)	0.00 (0.20) 0.45 (0.16) 0.58 (0.12) 1.32 (0.26)

С

apo E -/- Control

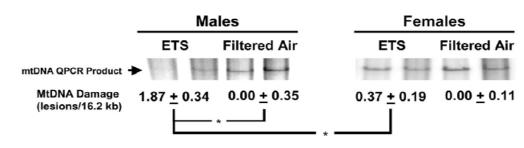

Control	apoE	E -/-		Ρ	value
Short (S) 0.08 kb	\rightarrow	-	-		-
Long (L) 16.0 kb	\rightarrow		4		-

1.36 (0.16)


0.001

0.0 (0.15)

In Vivo Effects of Cigarette Smoke Exposure


Ballinger et al., Cancer Research 1996

Mice

Knight-Lozano et al., Circulation 2002

Yang et al., Circulation 2004

Advantages/Disadvantages

- Can be lesion specific
- Quantitative (relative to control)
- Does not require isolation of mitochondria
- Requires only minimal amounts of DNA (10-30 ng)
- Is gene specific (nDNA)
- Damage is normalized to mtDNA copy number
- DNA extraction can induce oxidative damage
- Is usually used as a general measure of DNA damage
- Requires appropriate controls
- Some tissues work better than others

Summary

	8-oxodG	Southern Methods	QPCR
Required amount of DNA	20 – 100 µg	5 - 10 μg	10 - 30 ng
Specificity	3-oxodG	Strand breaks ¹	Strand breaks ¹ , bulky adducts
DNA extraction	mtDNA	Genomic	Genomic
Quantitative	Yes	Yes ²	Yes ^{2,3}
Genome/Gene specific	Yes/General	Yes/General ⁴	Yes/Yes

- Using with repair enzymes can increase specificity Relative to controls 1.
- 2.
- Normalized to gene copy number Specificity is probe dependent 3.
- 4.

Conclusions

- Detection of mtDNA damage is an important indicator of mitochondrial stress.
- Quantified damage is the net result of damage + repair.
- Increased mtDNA damage has been associated declining mitochondrial function, and with numerous diseases and aging.
- There is no single, ideal assay for detecting mtDNA damage yet.
- Accumulation of mtDNA damage likely leads to, or represents, organellar dysfunction, and therefore is biologically relevant.