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Outline

The Mitochondrion:

- Functions
- Characteristics
- The Mitochondrial DNA (mtDNA)

Why Would You Want to Measure mtDNA Damage?

Methods for Detection:
- HPLC-ECD: 8-0x0-2'-deoxyguanosine
- Southern methods
- Quantitative PCR

Summary - Conclusions



Origins of the Mitochondrion

Important Dates to Remember: ] .
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The Eukaryotic Cell
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EM View of the Mitochondrion
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Mitochondria are functionally complex

Thermal Energy
(Heat)

VI \ Molecular Energy
SN Nt 3 (ATP)

Mitochondria

Food Oxidants
(Caloric Energy) (0,7, H,0,, ONOO")

* Energy Production
- Thermogenesis
- Oxidant Production



Mitochondria are structurally complex

ATP synthase particles

* 10% - 20% of total cell protein iner membranespace
(~1500 different polypeptides) “
+ 20% volume of the eukaryotic cell
* 1/3 total cell membrane

* Mobile, shape changing

- mtDNA
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Granules

Inner membrane
Outer membrane

Amarabiotech.com/Mitochondria.html



The Mitochondrial DNA
(m?DN A) D-Loop Region
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Circular, double-stranded, 16,569 bp 125@£ S Fi : ,/-T Cytb

(humans) 16s rRNA \ iy _ ;
* Maternally inherited Bl E/

ND& * .

- Essentially lacks introns
* Mitochondrial genetics is complex

Encodes 37 genes essential for oxidative
phosphorylation (OXPHOS)
- 13 polypeptide subunits

- 22 tRNAs
- 2 rRNAs
Nuclear DNA encodes all remaining
mitochondrial proteins G Rass
ATPase8
Pathogenic mutations associated with human JRE e e R
disease have been reported in all 3 classes B o Samba P——

of mtDNA genes



M1DNA Damage and Repair

Relative to nuclear DNA, mtDNA appear more vulnerable to
damage induced by toxicant/oxidant exposure

- Proximity to oxidant generation (matrix side of IM)

- Lack of histones (organized in "nucleoids”)
- Accumulates lipophilic cations

Damage quantified is the net result of damage + repair



M1DNA Damage and Repair

Base excision repair (BER)
appears to be the major
repair mechanism in the
mitochondrion

- DNA glycosylases
AP endonuclease
+ Pol y

- DNA ligase

DAMAGED BASE

5’ 3

Glycosylase e Damaged base release

——  —

APE + Poly l AP-site cleavage +
Nucleotide incorporation

|

Pol y !

5'-end trimming

DNA ligase IIT | Nick ligation

de Souza-Pinto et al., DNA Repair 7: 2008



Why Measure MtDNA Damage?

* Measure of mitochondrial damage/oxidative
stress

+ Biomarker of exposure to environmental
tfoxicants

- Disease

- AD

- PD

- Cancer

- Atherosclerosis

Damage quantified is the net result of damage + repair



MtDNA Damage Assays

- HPLC-ECD: 8-0x0-2'-
deoxyguanosine

- Southern methods

- Quantitative PCR

Can be used to measure certain types of DNA base
modifications, strand breaks and bulky adducts



8-o0x0-2'-deoxyguanosine

o

o
N N
LY @SS
HM N

H;H
Huﬂzk_aj\ HOH,C &

OH 2 A OH  g.OH-dG

- Estimates of 8-0x0dG lesions 1/130,000 bases (hDNA),
1/8000 bases (mtDNA) (Richter et al. PNAS 1988)

- Levels of oxidized bases in the mtDNA are several times

greater than in nuclear DNA (Richter et al., 1988; Hudson
et al., 1998)

* 8 oxodG can pair with A, leading to a TA transversion

mutation (most 8 oxodG pairs correctly with C though).



High Performance Liquid
Chromatography and Electrochemical
Detection (HPLC-ECD)

Tissue | l\

* l
Isolate Mitochondria M‘\
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* Time (min)

Fi1G.1. Determination of o thmmtDNA DNA (40 ug) isolated
E tract MtDNA from rat liver mitochondria was enzymatically hydrolyzed and
X b]ectedtohlghperfm:an e liqu d chromatography in combina-
tton\mh electrochemical detection. The position of hd-G the
chromatogram is indicated by the arrow. Dashedl e represents a

sample pikedwthlﬂpmnl of oh®dG as standard.

HydronSIS Table 1. Formation of oh®dG in mtDNA by prooxidants

oh®*dG pmol per pg of

* C,,m,,c,m — '“C':;\"‘f _ nDNA had 16X lower

Alloxan 210 8-o0xodG (0.025
HPLC-ECD Fe>* 126

Alloxan/Fe* 1.94 meI/mg)
y-Irradiation (15 krad)

Mitochondria 0.94

mtDNA 2.70

Richter et al., PNAS 1988



Age Related Differences in 8-0xodG

Hudson et al. (Free Radic Res. 1998) compared 8-oxodG
levels in liver harvested from young (6 months) vs. old
(23 months) rats:

- a 2.5 - fold increase in 8-0xodG in liver mtDNA
with age.

- compared to hDNA, young animals had 5-fold higher
8-oxo0dG in the mtDNA; this difference was 12-fold
higher in older rats.



Prenatal Stress
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Fiz. 3 The comparison of the value of 3-0OH-dG/ 10°d G (the amount
of 8-OH-dG in every 107 dG) in hippocampus of offspring rats. The
contents of 8-OH-dG in female and male prenatal stressed offepring
were significantly higher than that in their respective controls
(F =00 ) 5-0H-AG level was significantly higher in the female-
stress group than in the male-stress group (F < 0.05), whereas there
was no any gender-dependent difference in the control groups (CON:
control; PNS: prenatal stress, ® P o« 0001 vs, CON, # £ =2 005 vs,
male)

Song et al., Neurochem Res (2009) 34: 739

Offspring from females
exposed to stress had
significantly higher levels of 8-
oxodG in mtDNA extracted
from hippocampus compared to
controls



Advantages/Disadvantages

- Specificity

+ Quantitative

» Uses a single product as an index of DNA damage

+ Standard methods require isolation of mitochondria
* Requires microgram amounts of DNA

- DNA extraction can induce oxidative damage

 Transversional mutations are not common in the

mtDNA



Southern Blot Assays:
Assessment of Strand
Breaks

Tissue
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LeDoux et al., Methods in Toxicology (1993)



Cytokine Induced mtDNA Damage:
TNFa and INFy
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Southern Blot Assays:
Formamidopyrimidine Glycosylase (Fpg)
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Advantages/Disadvantages

» Can be lesion specific
+ Quantitative (relative to control)
» Does not require isolation of mitochondria

* Requires microgram amounts of DNA
* May measure only general DNA damage
* DNA extraction can induce oxidative damage



» Undamaged mtDNA yields full

* Decreased full length product =

The Quantitative PCR (QPCR) Assay

length PCR products

Thermophilic |

- Damaged mtDNA causes the  |7® Foimelase

polymerase to stall or fall of f N ( &
resulting in an absence of the N Y
full length product

increased mtDNA damage

1)

Full Produét Prematurely
Terminated Product




M1DNA vs. nDNA using QPCR

Tissue
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Using QPCR to Assess Damage in
Multiple Cell Types and Genes

Vascular Cells Retinal Pigment Epithelium
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Ballinger et al., Exp Eye Res 1999
Ballinger et al., Circulation Research 2000



Using QPCR to Assess Damage In Vivo

Mice

A Mitochondrial DNA Damage in Control and apoE -/- Aortas

Humans

Mormal Atherosclerotic 10 weeks 34 weeks

| | | Control _apoE Control apoE
1 2 3 4 5 6 16.0kb —» as ab « + « . — e

15.2kb——+“u“ : >3

B The Effects of Genotype and Age on mtDNA
Damage (lesions/10 kb) in apoE -/- and Control Mice

Age

0.22 kb ) y el baas . it 10 weeks 34 weeks P value
Control  0.00 (0.20) 0.45 (0.186) 0.09 Effects
apoE -/- 0.58 (0.12) 1.32 (0.26) 0.013 | of Age
P value 0.018 0.008

Ballinger et al., Circulation 2002 Effects of Genotype

mtONA lesion/10 kb 0.0 70.08 0.67 +0.23 p<.05

c apo E -/~ Control

Long (L) 16.0 kb —» == &a ks S

Control apoE -/- P value
0.0 (0.15) 1.36 (0.16) 0.001




In Vivo Effects of Cigarette Smoke

Exposure
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Advantages/Disadvantages

Can be lesion specific

Quantitative (relative to control)

Does not require isolation of mitochondria
Requires only minimal amounts of DNA (10-30 ng)
Is gene specific (nDNA)

Damage is normalized Yo mtDNA copy number

DNA extraction can induce oxidative damage

Is usually used as a general measure of DNA damage
Requires appropriate controls

Some tissues work better than others



Summary

8-oxodG Southern QPCR
Methods
Required 20 - 100 pg 5-10 ng 10 - 30 ng
amount of DNA
Specificity 3-oxo0dG Strand breaks! | Strand breaks!,
bulky adducts
DNA miDNA Genomic Genomic
extraction
Quantitative Yes Yes? Yes?:3
Genome/Gene | Yes/General Yes/General* Yes/Yes

specific

Relative to controls

o=

Using with repair enzymes can increase specificity

Normalized to gene copy number
Specificity is probe dependent




Conclusions

Detection of mfDNA damage is an important
indicator of mitochondrial stress.

Quantified damage is the net result of damage
+ repair.

Increased mtDNA damage has been associated
declining mitochondrial function, and with
numerous diseases and aging.

»+ There is no single, ideal assay for detecting
mTDNA damage yet.

Accumulation of mtDNA damage likely leads to,
or represents, organellar dysfunction, and
therefore is biologically relevant.



