Blog

SFRBM Member Profile: Morgan Locy, Laura Corrales-Diaz Pomatto, David Schnell, Phillip Wages

Part 2 of 2 featuring Council Trainee Candidates

Morgan Locy, University of Alabama at Birmingham

Morgan Locy

As a future physician-scientist, my primary research goals revolve around the idea of utilizing redox biology to translate into medical therapies. I do not have a determined path of what my clinical specialty will be; however, I am a firm believer that aberrations in redox biology underlie pathophysiology of most, if not all, disease states. Therefore, upon determining my clinical interests I will be able to apply redox biology as the central component of my chosen research. I am currently studying the effects that redox biology has on the pathophysiology of pulmonary fibrosis.

Laura Corrales-Diaz Pomatto

Laura Corrales-Diaz Pomatto, University of Southern California

Our lab focuses upon oxidative stress and adaptation, in particular the 20S proteasome and the mitochondrial Lon protease. My research focus is centered upon understanding how the adaptive response of both these proteases change with age in the model organism Drosophila melanogaster. In both instances, the ability of D. melanogaster to adapt is robust in young females, but declines with age. I am currently exploring methods of potential ways to restore adaptive capacity in the aged fruit-fly.

David Schnel

David Schnell, University of Kentucky

Approximately 90 years ago, Otto Warburg observed an increase in glycolysis among amply oxygenated tumor cells and introduced the concept of aerobic glycolysis to the field of cancer metabolism. However, after near a century of research, the underlying causes of aerobic glycolysis are yet to be understood. My research investigates the origins of aerobic glycolysis through the lens of MnSOD deficiency, common in many early cancers. I am teasing apart the metabolic responses to decreased MnSOD through stable isotope resolved metabolomics (SIRM) and building a bridge from redox environment to the origins of the Warburg effect.

 

Phillip Wages

Phillip Wages, University of North California

I am interested in mechanistic toxicology within the scope of how environmental exposures impact human health. Through my work I have seen a broad underutilization of redox biology in many toxicology studies, and because of this I have a strong interest to integrate these two fields better. I am currently driven to understand the role of hydrogen peroxide and protein sulfenylation in air pollutant-induced perturbations of cellular signaling.  However, I plan to dedicate my future efforts to the broader field of redox proteomics by identifying novel redox proteins and assess their potential role in pathophysiology.

SFRBM Members can click here to take part in the Trainee Council Elections 

— Published

Category: SfRBM Member Profile


SFRBM Member Profile: Edward Moreira Bahnson, Kim Dunham-Snary, Sam Giordano

Part 1 of 2 featuring Council Trainee Candidates

Edward Moreira Bahnson, Northwestern University

Edward Moreira Bahnson

I started my scientific training working with Dr. Radi in the chemistry and biochemistry of reactive species. During my graduate work I focused on redox biology of the vasculature studying the biochemistry of cobalamin and reactive species in the endothelium. As a postdoctoral fellow, I have focused in the redox signals that drive the development of neointimal hyperplasia in the injured vasculature. I’m interested in the development of redox-based therapies for the inhibition of neointimal hyperplasia, as well as understanding the molecular mechanisms of the altered redox environment after arterial injury. In particular I’m interested in S-nitrosylation and NOX-dependent signaling.

Kim Dunham-Snary, Queen's University - Canada

Kim Dunham-Snary

I am interested in how the mitochondrion, and specifically, mitochondrial DNA (mtDNA), influence susceptibility to disease. Known racial disparities exist for numerous pathologies including cardiovascular disease, metabolic diseases and even some cancers. Since the mitochondrial genome varies between geographical populations, it may be a substantial contributing factor to both the onset and severity of these and other pathologies. My previous work focused on mtDNA sequence variation and body composition as it relates to obesity and metabolic disease. My postdoctoral research will include investigating mtDNA structure and organelle dynamics in pulmonary arterial hypertension (PAH) and lung cancer.

Sam Giordano

Sam Giordano, University of Alabama at Birmingham

My research interests include mitochondrial function and signaling, ROS, and inflammation in rat and pig models of vascular injury. Briefly, interleukin 8 (IL8) is upregulated during vascular injury and by overexpressing IL8 receptors on endothelial cells (ECs), and these ECs target to the sites of injury. Intravenous transfusion of the ECs overexpressing IL8 receptors into rat models have shown targeting to sites of injury, decreases in inflammatory cytokines and attenuation of vascular remodeling. Furthermore, we intend to determine the effects of alterations in the inflammatory cascade on ROS signaling and mitochondrial function during vascular injury.

SFRBM Members can click here to take part in the Trainee Council Election 

— Published

Category: SfRBM Member Profile


The Joys of Mentoring

For someone starting out in his or her career, a mentor can be a critical part of success. Mentors provide knowledge, support and networking opportunities. They help their protégés learn from their own experiences, successes and mistakes. But mentoring is more than simply answering occasional questions or providing help to the new kid on the block when he asks for it. It’s about an ongoing relationship of learning and guidance. 

In choosing a professional mentor, it’s helpful to find someone based on similar interests and career aspirations. Consider who has the skills you would like to strengthen or develop and whose work you admire. A potential mentor’s personality and communication style should match yours. He or she should be able to relate to and empathize with your goals or challenges in order to provide the most effective counsel. For instance, a female mentor raising a family might become a strong role model for a young woman struggling to balance work and home life. The relationship you build with a mentor should encourage open discussion of career and workplace issues.

Strong mentors will expect the best from their students. He or she will provide an encouraging, supportive, and safe environment for fulfilling those expectations. We have found this to be true in the world of scientific research. Students know they can depend on mentors to give them their best efforts in both the direction of research and as a trusted counselor to help navigate careers. Workplaces and organizations with formal mentoring programs often provide guidelines for roles and responsibilities that ensure a positive experience.

In a successful mentoring relationship, mentors get something out of it, too. They appreciate the youthful spirit, energy and fresh and creative minds that keep them optimistic and engaged. They enjoy watching their protégés get inspired, work passionately and succeed. Commitment to excellence in mentoring is a win-win situation for both mentee and mentor.

Allan Butterfield, Ph.D., is a professor of biological chemistry at the University of Kentucky. He is the co-recipient of the 2014 SFRBM Mentoring Excellence award.

— Published

Category: Education


We’re social. Now we’re kicking it up a notch.

SFRBM has entered the blogosphere! This new blog is where the Society’s members can share observations, experiences, challenges and successes related to the work they do. The intent is not to create another publication vehicle for research papers, but we do want it to expand our online presence and strengthen the SFRBM name with a broader audience. The blog also will be another way for our members to connect and learn from each other. 

We want to know about day-to-day life as a scientist. Explain, in the most basic terms, your current research and why it matters to science and medicine. Describe the most rewarding or frustrating days and the breakthroughs. Tell us about your collaborators and mentors, stories from the classroom, or the career path that led you to the place you are today. This blog can become a collective voice to help us demystify our very complex work for a general audience and inspire new interest in what we do.

All SFRBM members are encouraged to offer submissions to be considered for our blog. Here’s how to do it. Visit http://carneycommunications.com/sfrbm, and complete the online form with your professional information. “Blog Submission” is one of the optional fields to fill in; put the text for your suggested blog post there, and it will be reviewed.

We’re looking forward to hearing from you!

Neil Hogg, Ph.D.  SFRBM President

— Published